Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501934

RESUMO

For the first time, the double electrical percolation threshold was obtained in polylactide (PLA)/polycaprolactone (PCL)/graphene nanoplatelet (GNP) composite systems, prepared by compression moulding and fused filament fabrication (FFF). Using scanning electron microscopy (SEM) and atomic force microscopy (AFM), the localisation of the GNP, as well as the morphology of PLA and PCL phases, were evaluated and correlated with the electrical conductivity results estimated by the four-point probe method electrical measurements. The solvent extraction method was used to confirm and quantify the co-continuity in these samples. At 10 wt.% of the GNP, compression-moulded samples possessed a wide co-continuity range, varying from PLA55/PCL45 to PLA70/PCL30. The best electrical conductivity results were found for compression-moulded and 3D-printed PLA65/PCL35/GNP that have the fully co-continuous structure, based on the experimental and theoretical findings. This composite owns the highest storage modulus and complex viscosity at low angular frequency range, according to the melt shear rheology. Moreover, it exhibited the highest char formation and polymers degrees of crystallinity after the thermal investigation by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The effect of the GNP content, compression moulding time, and multiple twin-screw extrusion blending steps on the co-continuity were also evaluated. The results showed that increasing the GNP content decreased the continuity of the polymer phases. Therefore, this work concluded that polymer processing methods impact the electrical percolation threshold and that the 3D printing of polymer composites entails higher electrical resistance as compared to compression moulding.


Assuntos
Grafite , Nanocompostos , Polímeros/química , Nanocompostos/química , Grafite/química , Condutividade Elétrica , Varredura Diferencial de Calorimetria
2.
Environ Monit Assess ; 188(10): 576, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27650437

RESUMO

The purpose of this paper was to highlight potential exposure in indoor air to phosphorus flame retardants (PFRs) due to their use in upholstered furniture. For that, an analytical method of PFRs by headspace coupled to solid-phase micro-extraction (HS-SPME) was developed on cushioning foams in order to determine the PFRs' volatile fraction in the material. Tests on model foams proved the feasibility of the method. The average repeatability (RSD) is 6.3 % and the limits of detection range from 0.33 to 1.29 µg g(-1) of foam, depending on the PFRs. Results showed that some PFRs can actually be emitted in air, leading to a potential risk of exposure by inhalation. The volatile fraction can be high (up to 98 % of the total PFRs amount) and depends on the physicochemical properties of flame retardants, on the textural characteristics of the materials and on the temperature. The methodology developed for cushioning foams could be further applied to other types of materials and can be used to rate them according to their potential releases of phosphorus flame retardants.


Assuntos
Poluentes Atmosféricos/análise , Retardadores de Chama/análise , Decoração de Interiores e Mobiliário , Compostos Organofosforados/análise , Monitoramento Ambiental , Sistema Respiratório , Microextração em Fase Sólida , Volatilização
3.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611158

RESUMO

Synthetic biomaterials play a crucial role in developing tissue-engineered heart valves (TEHVs) due to their versatile mechanical properties. Achieving the right balance between mechanical strength and manufacturability is essential. Thermoplastic polyurethanes (TPUs) and elastomers (TPEs) garner significant attention for TEHV applications due to their notable stability, fatigue resistance, and customizable properties such as shear strength and elasticity. This study explores the additive manufacturing technique of selective laser sintering (SLS) for TPUs and TPEs to optimize process parameters to balance flexibility and strength, mimicking aortic valve tissue properties. Additionally, it aims to assess the feasibility of printing aortic valve models with submillimeter membranes. The results demonstrate that the SLS-TPU/TPE technique can produce micrometric valve structures with soft shape memory properties, resembling aortic tissue in strength, flexibility, and fineness. These models show promise for surgical training and manipulation, display intriguing echogenicity properties, and can potentially be personalized to shape biocompatible valve substitutes.

4.
Materials (Basel) ; 16(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834577

RESUMO

Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, this study aims to investigate the morphology and properties of poly(lactic acid) (PLA)/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) (at a ratio of 75/25 (w/w)) blends reinforced with halloysite nanotubes (HNTs) and compatibilized with poly(lactic acid)-grafted maleic anhydride (PLA-g-MA). HNTs and PLA-g-MA were added to the polymer blend at 5 and 10 wt.%, respectively, and everything was processed via melt compounding. A scanning electron microscopy (SEM) analysis shows that HNTs are preferentially localized in PHBHHx nodules rather than in the PLA matrix due to its higher wettability. When HNTs are combined with PLA-g-MA, a finer and a more homogeneous morphology is observed, resulting in a reduction in the size of PHBHHx nodules. The presence of HNTs in the polymer blend improves the impact strength from 12.7 to 20.9 kJ/mm2. Further, with the addition of PLA-g-MA to PLA/PHBHHX/HNT nanocomposites, the tensile strength, elongation at break, and impact strength all improve significantly, rising from roughly 42 MPa, 14.5%, and 20.9 kJ/mm2 to nearly 46 MPa, 18.2%, and 31.2 kJ/mm2, respectively. This is consistent with the data obtained via dynamic mechanical analysis (DMA). The thermal stability of the compatibilized blend reinforced with HNTs is also improved compared to the non-compatibilized one. Overall, this study highlights the effectiveness of combining HNTs and PLA-g-AM for the properties enhancement of PLA/PHBHHx blends.

5.
Polymers (Basel) ; 15(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447417

RESUMO

The incorporation of fly ash in polybutyl succinate (PBS) and polybutyl adipate terephtalate (PBAT) in the partial replacement of ammonium polyphosphate and/or melamine polyphosphate is evaluated in the present work. Furthermore, the influence of the surface modification of fly ash with two silanes and titanate coupling agents was also studied. Cone calorimeter experiments, pyrolysis combustion flow calorimeters (PCFCs), and UL94V tests were used to assess the fire performance of the composites. Scanning electronic microscopy, X-microanalysis, and X-ray diffractometry analysis were carried out on cone calorimeter residues in order to access the fire-retardant mode of action. The formation of new components due to the presence of fly ash was highlighted by X-ray diffractometry, indicating the synergistic effects between the flame-retardant system and fly ash. The X-microanalysis results showed that the main fraction of initial phosphorous is present in the cone calorimeter residue, indicating that the proposed system acts in a condensed phase.

6.
Materials (Basel) ; 15(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591733

RESUMO

The aim of this study was to investigate the structure-properties relationship of ternary blends of polylactide/polyhydroxybutyrate (PLA/PHB)/organo-modified layered silicate (OMLS). Morphological, thermal, rheological, and mechanical characterizations were performed to understand the influence of OMLS on PLA/PHB (70/30 wt%) formulations optimized through modifications with an epoxy-based chain extender, the use of a plasticizer, as well as the influence of the type of processing route: injection molding or fused filament fabrication. The addition of OMLS allowed the blend compatibility to be improved, with the appearance of a single melting peak on DSC thermograms at 146 °C, as well as the reduction in the size of the nodules for the injected molded specimens. Concerning the printed samples, AFM analysis revealed a coalescence of the PHB minor phase due to its degradation. This phenomenon was dramatically enhanced in the presence of OMLS and has been ascribed to the degradation of both the organo-modifier and the PHB minor phase in the blend. Rheological and mechanical tests (17% decrease in Young's modulus and 13% decrease in elongation at break) confirmed this degradation that would have occurred during the manufacturing of the filaments and the printing of specimens due to additional thermal and cooling steps.

7.
Materials (Basel) ; 15(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160709

RESUMO

For the purpose of fabricating electrically conductive composites via the fused filament fabrication (FFF) technique whose properties were compared with injection-moulded properties, poly(lactic acid) (PLA) and polycaprolactone (PCL) were mixed with different contents of graphene nanoplatelets (GNP). The wettability, morphological, rheological, thermal, mechanical, and electrical properties of the 3D-printed samples were investigated. The microstructural images showed the selective localization of the GNPs in the PCL nodules that are dispersed in the PLA phase. The electrical resistivity results using the four-probes method revealed that the injection-moulded samples are insulators, whereas the 3D-printed samples featuring the same graphene content are semiconductors. Varying the printing raster angles also exerted an influence on the electrical conductivity results. The electrical percolation threshold was found to be lower than 15 wt.%, whereas the rheological percolation threshold was found to be lower than 10 wt.%. Furthermore, the 20 wt.% and 25 wt.% GNP composites were able to connect an electrical circuit. An increase in the Young's modulus was shown with the percentage of graphene. As a result, this work exhibited the potential of the FFF technique to fabricate biodegradable electrically conductive PLA-PCL-GNP composites that can be applicable in the electronic domain.

8.
Materials (Basel) ; 15(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269005

RESUMO

In the present work, the processability and fire behavior of parts made by the laser sintering (LS) of polyamide 12/rubber powder blends is studied. In order to evaluate some of the interactions that could take place during LS, three acrylonitrile butadiene rubbers (NBRs) were used, which included two that had different acrylonitrile (AN) contents, and one that had carboxylated rubber. The results show that the flowability of the powders is strongly dependent on the rubber used. For the carboxylated rubber, a good flowability of the blend was observed, whereas the use of rubbers with different AN contents led to significant changes in the powder flowability, with a heterogeneous powder bed, and differences in the porosity as a function of the AN content. Furthermore, the addition of rubbers to polyamide 12 (PA12) entails an increase in the sintering window and, in particular, a change in the melting temperature of PA12 is noticed. Even though some changes in the crystallization and melting temperatures are observed, formulations containing 10 and 20 wt.% of rubbers could be processed using the same process parameters as PA12. Furthermore, the formulations containing carboxylated rubber show improved fire behavior, which is measured by a cone calorimeter, with reductions of about 45 and 65% in the peak of the heat release rate, compared to the PA12. Moreover, almost all of the samples evaluated in this study are classed as "Good" by the Flame Retardancy Index. This result can be partially explained by the formation of an amide linkage between the polyamide and NBR during processing, which could result in increases in the melt viscosities of these samples.

9.
J Hazard Mater ; 424(Pt B): 127544, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879530

RESUMO

The toxicological profile of particulates released from carbon fibre-reinforced composites (CFC) incorporating nanoadditives, under impact and fire conditions (e.g. aircraft crash), is unknown to date. Our aim was to investigate the effects of simultaneous impact and fire on the physicochemical features of the particles released from CFCs produced from a graphene oxide (GO)-reinforced epoxy resin and the consequences on its toxicological profile. CFC samples with (CFC + GO) or without GO (CFC) were subjected to simultaneous impact and fire through a specific setup. Soot and residues were characterised and their toxicity was compared to that of virgin GO. Virgin GO was not cytotoxic but induced pro-inflammatory and oxidative stress responses. The toxicity profile of CFC was similar for soot and residue: globally not cytotoxic, inducing a pro-inflammatory response and no oxidative stress. However, an increased cytotoxicity at the highest concentration was potentially caused by fibres of reduced diameters or fibril bundles, which were observed only in this condition. While the presence of GO in CFC did not alter the cytotoxicity profile, it seemed to drive the pro-inflammatory and oxidative stress response in soot. On the contrary, in CFC + GO residue the biological activity was decreased due to the physicochemical alterations of the materials.


Assuntos
Grafite , Fibra de Carbono , Grafite/toxicidade , Oxirredução , Estresse Oxidativo
10.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566871

RESUMO

The influence of processing intumescent bio-based poly(lactic acid) (PLA) composites by injection and fused filament fabrication (FFF) was evaluated. A raw (ANa) and two acidic-activated (AH2 and AH5) montmorillonites were added to the intumescent formulation, composed by lignin and ammonium polyphosphate, in order to evaluate the influence of the strength and the nature (Brønsted or Lewis) of their acidic sites on the fire behavior of the composites. The thermal stability and the volatile thermal degradation products of the composites were assessed. The injected and 3D-printed composites were submitted to cone calorimeter (CC), limit oxygen index (LOI), and UL-94 flammability tests. A similar tendency was observed for the injected and 3D-printed samples. The high density of strong Lewis sites in AH2 showed to be detrimental to the fire-retarding properties. For the CC test, the addition of the intumescent composite reduced the peak of heat released (pHRR) in approximately 49% when compared to neat PLA, while the composites containing ANa and AH5 presented a reduction of at least 54%. However, the addition of AH2 caused a pHRR reduction of around 47%, close to the one of the composite without clay (49%). In the LOI tests, the composites containing ANa and AH5 achieved the best results: 39% and 35%, respectively, for the injected samples, and 35 and 38% for the 3D-printed samples. For the composite containing AH2 the LOI values were 34% and 32% for injected and 3D-printed samples, respectively. Overall, the best performance in the flammability tests was achieved by the composites containing clays with only weak and moderate strength acidic sites (ANa and AH5).

11.
Nanomaterials (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209980

RESUMO

This work highlights the possibility of obtaining peculiar morphologies by adding fumed silica into 80/20 polylactic acid/polyamide11 (PLA/PA11) blends. Two kinds of fumed silica (A200 and trimethoxyoctylsilane modified R805 fumed silica) were dispersed (by twin-screw extrusion, TSE) at a weight amount of 5% in neat PLA, neat PA11 and a 80/20 PLA/PA11 blend. Thermal Gravimetric Analysis (TGA) was used to verify this 5 wt % amount. Oscillatory shear rheology tests were conducted on all the formulations: (1) on neat polymer nanocomposites (PLASi5, PLASiR5, PA11Si5, PA11SiR5); and (2) on polymer blend nanocomposites (PLA80Si5 and PLA80SiR5). Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscope (STEM), Atomic Force Microscopy (AFM) characterizations and laser granulometry were conducted. Microscopic analysis performed on polymer blend nanocomposites evidenced a localization of A200 silica in the PA11 dispersed phase and R805 silica at the PLA/PA11 interface. Frequency sweep tests on neat polymer nanocomposites revealed a pronounced gel-like behavior for PLASi5 and PA11SiR5, evidencing a high dispersion of A200 in PLA and R805 in PA11. A yield behavior was also evidenced for both PLA80Si5 and PLA80SiR5 blends. For the blend nanocomposites, PA11 dispersed phases were elongated in the presence of A200 silica and a quasi-co-continuous morphology was observed for PLA80Si5, whereas PLA80SiR5 exhibits bridges of silica nanoparticles between the PA11 dispersed phases.

12.
Polymers (Basel) ; 13(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069410

RESUMO

Recycling of plastics is hindered by their important variety and strong incompatibility. However, sorting technologies bear costs and meet limits. Very high purities (<2 wt%) are difficult to reach. Yet, such rates may be detrimental to functional properties. In this work, an ABS matrix (major plastic in Waste of Electrical and Electronic Equipments) was filled with 4 wt% of PP to mimic impurities in ABS after recycling. PP-g-MA was introduced in the blend to improve the compatibility. A finite element model was developed from the mechanical behavior of each component. ABS and PP were individually characterized from tensile tests instrumented with photomechanics and their behaviors were modelled through a set of numerical parameters (elasto-visco-plasticity with a Gurson's criterion behavior). Comparison between the determinist model results and the experimental data (strength, volumetric variation) shows that this type of modelling could be a predictive tool in order to anticipate composite mechanical properties and to understand micromechanisms of deformation (damage, cavitation). The main result is that PP introduced at 4 wt% into ABS does not alter the static mechanical properties despite polymers incompatibility. The addition of PP-g-MA modifies the local properties and possibly conduct to a premature breakage of the polymer blend.

13.
Polymers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947020

RESUMO

With the development of dark polymers for industrial sorting technologies, economically profitable recycling of plastics from Waste Electrical and Electronical Equipment (WEEE) can be envisaged even in the presence of residual impurities. In ABS extracted from WEEE, PP is expected to be the more detrimental because of its important lack of compatibility. Hence, PP was incorporated to ABS at different rates (2 to 8 wt%) with a twin-screw extruder. PP was shown to exhibit a nodular morphology with an average diameter around 1-2 µm. Tensile properties were importantly diminished beyond 4 wt% but impact resistance was decreased even at 2 wt%. Both properties were strongly reduced as function of the contamination rate. Various potential compatibilizers for the ABS + 4 wt% PP system were evaluated: PPH-g-MA, PPC-g-MA, ABS-g-MA, TPE-g-MA, SEBS and PP-g-SAN. SEBS was found the most promising, leading to diminution of nodule sizes and also acting as an impact modifier. Finally, a Design Of Experiments using the Response Surface Methodology (DOE-RSM) was applied to visualize the impacts and interactions of extrusion temperature and screw speed on impact resistance of compatibilized and uncompatibilized ABS + 4 wt% PP systems. Resilience improvements were obtained for the uncompatibilized system and interactions between extrusion parameters and compatibilizers were noticed.

14.
Materials (Basel) ; 13(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481499

RESUMO

A comparison of the influence of sepiolite and lignin as potential synergists for fire retardant (FR) systems based on ammonium polyphosphate (APP) has been carried out in polyurethane elastomer and polylactide. Different ratios of kraft lignin and sepiolite were tested in combination with APP in both polymers. The thermal stability and the fire behavior of the corresponding composites were evaluated using Thermogravimetric Analysis (TGA), a Pyrolysis Combustion Flow Calorimeter (PCFC) and Cone Calorimeter (CC). The mechanisms of flame retardancy imparted by APP and other components were investigated. Synergistic effects were highlighted but only for specific ratios between APP and sepiolite in polyurethane elastomer (PUE) and polylactide (PLA) on one hand, and between APP and lignin in PLA on the other hand. Sepiolite acts as char reinforcement but through the formation of new phosphorus compounds it is also able to form a protective layer. Conversely, only complementary effects on fire performance were noted for lignin in PUE due to a dramatic influence on thermal stability despite its action on char formation.

15.
J Funct Biomater ; 11(3)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947911

RESUMO

In the present study, poly(3-hydroxybuturate-co-3-hydroxyvalerate) (PHBV) and plasticized polylactide acid (PLA) blends were processed by melt extrusion with different weight ratio (up to 20 wt.% of PHBV). Bionanocomposites were obtained through the incorporation of an organomodified montmorillonite (C30B) at 3 wt.%. The main features of the processing and physico-chemical characterization of films and injected samples were assessed and the influence of the components on the chemical, thermal and mechanical properties of the bionanocomposites was investigated. The results indicated that plasticized PLA/PHBV/C30B bionanocomposites present optimal mechanical properties for sanitary applications. Moreover, plasticized PLA/PHBV could lead to finely tuned biomaterials able to form electrospun nanofibers.

16.
Waste Manag ; 109: 51-64, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388403

RESUMO

Ageing of polymers entails important structural changes and degrades their functional properties, particularly their aspect. Since sorting is a primordial step in recycling to achieve acceptable mechanical properties, the use of promising technologies such as MIR-HSI (Mid-Infrared Hyperspectral Imagery), which could overcome black plastics sorting issue, has to take into account the influence of ageing on identification. As ageing strongly impacts spectra, it can create confusion between materials, especially in an automatized scheme. Based on laboratory FTIR-ATR (Fourier-Transform Infrared Attenuated Total Reflection), this work investigates spectral evolutions of natural and accelerated photodegradation of Waste of Electric and Electrical Equipment plastics (WEEE) as PE, PP, HIPS, ABS and PC to help identifying a polymer despite its ageing degree. Oxidation marks were described and retrieved within a stock of about one hundred of real waste samples, then differentiated from other sources of spectral alteration as formulation. Laboratory ageing data were found to be consistent and often more extreme than real waste samples values. Generally, styrenics showed stronger spectral alteration than polyolefins despite their respective aspects. No significant spectral alteration of PC was obtained here or observed in the waste stock. As an important oxidation marker, the carbonyl peak was also found to often enable fast identification through its wavenumber. If well taken in account, ageing should not induce confusion with other polymers, even formulated, as characteristic signals are different. Finally, the different industrial sub-ranges within MIR are not affected at the same degree, possibly influencing a technological choice for industrial sorting.


Assuntos
Plásticos , Reciclagem , Eletricidade , Indústrias , Polímeros
17.
Materials (Basel) ; 12(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269752

RESUMO

The present study investigates the effect of using lignin at nanoscale as new flame-retardant additive for polylactide (PLA). Lignin nanoparticles (LNP) were prepared from Kraft lignin microparticles (LMP) through a dissolution-precipitation process. Both micro and nano lignins were functionalized using diethyl chlorophosphate (LMP-diEtP and LNP-diEtP, respectively) and diethyl (2-(triethoxysilyl)ethyl) phosphonate (LMP-SiP and LNP-SiP, respectively) to enhance their flame-retardant effect in PLA. From the use of inductively coupled plasma (ICP) spectrometry, it can be considered that a large amount of phosphorus has been grafted onto the nanoparticles. It has been previously shown that blending lignin with PLA induces degradation of the polymer matrix. However, phosphorylated lignin nanoparticles seem to limit PLA degradation during melt processing and the nanocomposites were shown to be relatively thermally stable. Cone calorimeter tests revealed that the incorporation of untreated lignin, whatever its particle size, induced an increase in pHRR. Using phosphorylated lignin nanoparticles, especially those treated with diethyl (2-(triethoxysilyl)ethyl) phosphonate allows this negative effect to be overcome. Moreover, the pHRR is significantly reduced, even when only 5 wt% LNP-SiP is used.

18.
Waste Manag ; 98: 160-172, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450178

RESUMO

Sorting at industrial scale is required to perform mechanical recycling of plastics in order to obtain properties that could be competitive with virgin polymers. As a matter of fact, the most part of the various types of plastic waste are not miscible and even compatible. Mid-Infrared (MIR) HyperSpectral Imagery (HSI) is viewed as one of the solutions to the problem of black plastic sorting. Many Waste of Electrical and Electronic Equipment (WEEE) plastics are black. Nowadays, these materials are difficult to sort at an industrial scale because the main used pigment to produce this color, carbon black, masks the Near-Infrared (NIR) spectra of polymers, the currently most used technology for acute sorting in industrial conditions. In this study, laboratory Fourier-Transform Infrared (FTIR) in Attenuated Total Reflection mode (ATR) has been used as a theoretical toolbox based on physical chemistry to help building an automated HSI discrimination despite its limited conditions, especially shorter wavelengths ranges. Weaker resolution and very short acquisition times are other HSI limitations. Helping fast and exhaustive laboratory characterizations of polymeric waste stocks is the other goal of this study. This study focusses on polyolefins as they represent the second biggest fraction of WEEE plastics (WEEP) after styrenics and since little quantities mixed to styrenics during mechanical recycling can lead to important decrease in mechanical properties. Twelve references were thus evaluated and compared between each other and with real waste samples to highlight spectral elements, which can enable differentiation. Charts compiling the signals of discussed polymers were built aiming to the same objective.


Assuntos
Resíduo Eletrônico , Plásticos , Polienos , Polímeros , Reciclagem
19.
Waste Manag ; 95: 513-525, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351637

RESUMO

One of the major limitations in polymer recycling is their sorting as they are collected in mixes. The majority of polymers are highly incompatible without compatibilizers. For sorting of polymers, high-speed online Near-Infrared (NIR) spectroscopy is nowadays relatively widespread. It is however limited by the use of carbon black as a pigment and UV-stabilizer, which strongly absorbs near-infrared signals. Mid-Infrared (MIR) hyperspectral cameras were recently put on the market. However, their wavelength ranges are smaller and their resolutions are poorer, in comparison with laboratory equipment based on Fourier-Transform Infrared (FTIR). The identification of specific signals of end-of-life polymers for recycling purposes is becoming an important stake since they are very diverse, highly formulated, and more and more used in copolymers and blends, leading to complex waste stocks mainly as WEEE (Waste Electrical and Electronic Equipment). Dark colored plastics are the major part of WEEE, which also contains mainly styrenics (ABS, HIPS and their blends). In addition, styrenics are especially concerned by the need of identification. In this framework, spectral characterizations of ten types of polymers were scrutinized through about eighty pristine and real waste samples. Polymer characteristic signals were aggregated in charts to help rapid and automatized distinction through specific signals, even in limited resolution and frequency ranges.


Assuntos
Resíduo Eletrônico , Plásticos , Eletricidade , Indústrias , Polímeros , Reciclagem
20.
Materials (Basel) ; 12(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764474

RESUMO

The aim of this work was to study the properties of polylatic acid/polyamide 11 (PLA/PA11) blends compatibilized with a multifunctionalized epoxide, Joncryl®, and to evaluate the performance of such blends processed by Fused Deposition Modeling (FDM) 3D printing, compared to those produced by injection molding method. Blends containing different Joncryl contents from 0.5 to 3 wt% were prepared by twin-screw extrusion. Evaluation of thermal, rheological and mechanical properties of such blends proved that Joncryl acted as a compatibilizer. Results showed that Joncryl effects on blends properties were improved with increasing its content. A significant reduction of PA11 dispersed phases diameter and an improvement of tensile properties with a ductile behavior were achieved for the highest Joncryl contents. A significant elongation of PA11 dispersed phases was observed into FDM filaments and dog bone shaped specimens produced thereafter. Despite this peculiar morphology, FDM printed samples exhibited only enhanced stiffness but poor reinforcement and elongation at break in comparison with injected ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA