Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(28): 18311-18320, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678259

RESUMO

The light harvesting complex II (LHCII), is a pigment-protein complex responsible for most of the light harvesting in plants. LHCII harvests sunlight and transfers excitation energy to the reaction centre of the photo-system, where the water oxidation process takes place. The energetics of LHCII can be modulated by means of conformational changes allowing a switch from a harvesting to a quenched state. In this state, the excitation energy is no longer transferred but converted into thermal energy to prevent photooxidation. Based on molecular dynamics simulations at the microsecond time scale, we have recently proposed that the switch between different fluorescent states can be probed by correlating shifts in the chromophore-chromophore Coulomb interactions to particular protein movements. However, these findings are based upon calculations in the ideal point dipole approximation (IDA) where the Coulomb couplings are simplified as first order dipole-dipole interactions, also assuming that the chromophore transition dipole moments lay in particular directions of space with constant moduli (FIX-IDA). In this work, we challenge this approximation using the time-dependent density functional theory (TDDFT) combined with the frozen density embedding (FDE) approach. Our aim is to establish up to which limit FIX-IDA can be applied and which chromophore types are better described under this approximation. For that purpose, we use the classical trajectories of solubilised light harvesting complex II (LHCII) we have recently reported [Liguori et al., Sci. Rep., 2015, 5, 15661] and selected three pairs of chromophores containing chlorophyll and carotenoids (Chl and Car): Chla611-Chla612, Chlb606-Chlb607 and Chla612-Lut620. Using the FDE in the Tamm-Dancoff approximation (FDEc-TDA), we show that IDA is accurate enough for predicting Chl-Chl Coulomb couplings. However, the FIX-IDA largely overestimates Chl-Car interactions mainly because the transition dipole for the Cars is not trivially oriented on the polyene chain.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Carotenoides/química , Clorofila/química , Complexos de Proteínas Captadores de Luz/metabolismo , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Solubilidade , Termodinâmica
2.
Phys Rev Lett ; 107(2): 023202, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797602

RESUMO

A combination of time-dependent density functional theory and Born-Oppenheimer molecular dynamics methods is used to investigate fragmentation of doubly charged gas-phase uracil in collisions with 100 keV protons. The results are in good agreement with ion-ion coincidence measurements. Orbitals of similar energy and/or localized in similar bonds lead to very different fragmentation patterns, thus showing the importance of intramolecular chemical environment. In general, the observed fragments do not correspond to the energetically most favorable dissociation path, which is due to dynamical effects occurring in the first few femtoseconds after electron removal.


Assuntos
Elétrons , Gases/química , Simulação de Dinâmica Molecular , Uracila/química , Cinética , Conformação Molecular , Análise Espectral
3.
Mutat Res ; 704(1-3): 45-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20079878

RESUMO

Theoretical simulations are particularly well suited to investigate, at a molecular level, direct and indirect effects of ionising radiations in DNA, as in the particular case of irradiation by swift heavy ions such as those used in hadron therapy. In the past recent years, we have developed the modeling at the microscopic level of the early stages of the Coulomb explosion of DNA molecules immersed in liquid water that follows the irradiation by swift heavy ions. To that end, Time-Dependent Density Functional Theory molecular dynamics simulations (TD-DFT MD) have been developed where localised Wannier orbitals are propagated. This latter enables to separate molecular orbitals of each water molecule from the molecular orbitals of the biomolecule. Our main objective is to demonstrate that the double ionisation of one molecule of the liquid sample, either one water molecule from the solvent or the biomolecule, may be in some cases responsible for the formation of an atomic oxygen as a direct consequence of the molecule Coulomb explosion. Our hypothesis is that the molecular double ionisation arising from irradiation by swift heavy ions (about 10% of ionisation events by ions whose velocity is about the third of speed of light), as a primary event, though maybe less probable than other events resulting from the electronic cascading (for instance, electronic excitations, electron attachments), may be systematically more damageable (and more lethal), as supported by experiments that have been carried out in our group in the 1990s (in studies of damages created by K holes in DNA). The chemical reactivity of the produced atomic oxygen with other radicals present in the medium will ultimately lead to chemical products that are harmful to DNA. In the present paper, we review our theoretical methodology in an attempt that the community be familiar with our new approach. Results on the production of atomic oxygen as a result of the double ionisation of water or as a result of the double ionisation of the Uracil RNA base will be presented.


Assuntos
Dano ao DNA , Modelos Teóricos , Radiação Ionizante , Água/química , Biologia Computacional , Íons Pesados , Imersão , Simulação de Dinâmica Molecular , Oxigênio/química , Uracila/química
4.
J Mol Model ; 20(5): 2221, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810462

RESUMO

Modeling proton-induced damage in biological systems, in particular in DNA building blocks, is of major concern in studies on cancer proton therapy. This is indeed an extremely complex process and analysis of the mechanism at the molecular level is of crucial interest. Such collision reactions of protons on biological targets induce different reactions: excitation and ionization of the biomolecule, fragmentation of the ionized species, and charge transfer from the projectile ion toward the biomolecular target. In order to have an insight into such mechanisms, we have performed a theoretical approach of two of the most important steps, the fragmentation and the charge transfer processes. For that purpose, we have considered collision of protons with isolated 2-deoxy-D-ribose by means of ab-initio molecular dynamics and quantum chemistry molecular methods. The conformation of the sugar moiety has been analyzed and appears to induce important effects, in particular different fragmentation patterns have been pointed out with regard to the conformation, and significant variations of the charge transfer cross sections have been exhibited.


Assuntos
Dano ao DNA , Desoxirribose/química , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Prótons , Configuração de Carboidratos , Transferência de Energia , Conformação de Ácido Nucleico , Teoria Quântica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA