Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(20): 3941-3954, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35551329

RESUMO

Oil-continuous drilling fluids used in the oil and gas industry are formulated to be pseudoplastic with a relatively weak yield stress. These fluids are required to maintain their properties over wide temperature and pressure ranges yet there are few methods that can sensitively study the inherent structure and mechanical properties in the fluids under such conditions. Here we study a model oil-continuous drilling fluid formulation as a function of both temperature (up to 153 °C) and pressure (up to 1330 bar) with Diffusive Wave Spectroscopy (DWS). The system comprises a colloidal gel network of clay particles and trapped emulsion droplets. As a function of temperature the system undergoes local structural changes reflected in the DWS dynamics which are also consistent with macroscopic rheological measurements. On cycling to high pressure the system exhibits similar structural and dynamic changes with a strong hysteresis. Although multiple scattering in multicomponent non-ergodic samples does not directly yield self diffusion probe dynamics, the use of microrheology analysis here appears to be in good agreement with direct rheological measurements of the sample linear viscoelasticity at ambient pressure. Thus DWS microrheology succesfully probes irreversible changes in the structure and the mechanical response of the drilling fluid formulation under a high pressure cycle.

2.
Opt Lett ; 46(21): 5437-5440, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724495

RESUMO

Light induced self-written waveguides (LISWs) with unique elongation characteristics and low optical loss are formed in a monodispersed polyisoprene solution using a low-power laser photopolymerization process, while their light transmission characteristics are exemplified in the flexible interconnection of two single-mode optical fibers operating in the visible/near infrared wavelengths. The LISWs formed exhibit rubbery properties, allowing extensibilities upon cases from 400% to 800%, while still retaining significant optical transmission. The rubber elasticity enables sustaining LISWs at stressed lengths longer than 500 µm propagation losses from 1.0 to 2.9 dB/mm.

3.
Nature ; 514(7520): 76-9, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25209661

RESUMO

Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high-finesse cavity, should match the sensitivity of linear birefringence measurements (3 × 10(-13) radians), which is several orders of magnitude more sensitive than current chiral detection limits and is expected to transform chiral sensing in many fields.

4.
Langmuir ; 35(52): 17103-17113, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31793788

RESUMO

The yet virtually unexplored class of soft colloidal rods with a small aspect ratio is investigated and shown to exhibit a very rich phase and dynamic behavior, spanning from liquid to nearly melt state. Instead of the nematic order, these short and soft nanocylinders alter their organization with increasing concentration from isotropic liquid with random orientation to small domains with preferred local orientation and eventually a multidomain arrangement with a local orientational order. The latter gives rise to a kinetically suppressed state akin to structural glass with detectable terminal relaxation, which, on further increasing concentration, reveals features of hexagonally packed order as in ordered block copolymers. The respective dynamic response comprises four regimes, all above the overlapping concentration of 0.02 g/mL:(I) from 0.03 to 0.1 g/mol, the system undergoes a liquid-to-solidlike transition with a structural relaxation time that grows by 4 orders of magnitude. (II) From 0.1 to 0.2 g/mL, a dramatic slowing-down is observed and is accompanied by an evolution from isotropic to a multidomain structure. (III) Between 0.2 and 0.6 g/mol, the suspensions exhibit signatures of shell interpenetration and jamming, with the colloidal plateau modulus depending linearly on concentration. (IV) At 0.74 g/mL, in the densely jammed state, the viscoelastic signature of hexagonally packed cylinders from microphase-separated block copolymers is detected. These properties set short and soft nanocylinders apart from long colloidal rods (with a large aspect ratio) and provide insights for fundamentally understanding the physics in this intermediate soft colloidal regime and for tailoring the flow properties of nonspherical soft colloids.

5.
Langmuir ; 32(27): 6956-66, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27329929

RESUMO

We form films of carboxylated polystyrene particles (C-PS) at the air-water interface and investigate the effect of subphase pH on their structure and rheology by using a suite of complementary experimental techniques. Our results suggest that electrostatic interactions drive the stability and the structural order of the films. In particular, we show that by increasing the pH of the subphase from 9 up to 13, the films exhibit a gradual transition from solid to liquidlike, which is accompanied by a loss of the long-range order (that characterizes them at lower values of pH). Direct optical visualization of the layers, scanning electron microscopy, and surface pressure isotherms indicate that the particles deposited at the interface form three-dimensional structures involving clusters, with the latter being suppressed and a quasi-2D particle configuration eventually reached at the highest pH values. Evidently, the properties of colloidal films can be tailored significantly by altering the pH of the subphase.

6.
Langmuir ; 32(13): 3139-51, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26978461

RESUMO

Semifluorinated alkanes form monolayers with interesting properties at the air-water interface due to their pronounced amphi-solvophobic nature and the stiffness of the fluorocarbons. In the present work, using a combination of structural and dynamic probes, we investigated how small molecular changes can be used to control the properties of such an interface, in particular its organization, rheology, and reversibility during compression-expansion cycles. Starting from a reference system perfluor(dodecyl)dodecane, we first retained the linear structure but changed the linkage groups between the alkyl chains and the fluorocarbons, by introducing either a phenyl group or two oxygens. Next, the molecular structure was changed from linear to branched, with four side chains (two fluorocarbons and two hydrocarbons) connected to extended aromatic cores. Neutron reflectivity at the air-water interface and scanning force microscopy on deposited films show how the changes in the molecular structure affect molecular arrangement relative to the interface. Rheological and compression-expansion measurements demonstrate the significant consequences of these changes in molecular structure and interactions on the interfacial properties. Remarkably, even with these simple molecules, a wide range of surface rheological behaviors can be engineered, from viscous over viscoelastic to brittle solids, for very similar values of the surface pressure.

7.
Phys Chem Chem Phys ; 17(43): 28844-52, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26451399

RESUMO

Semifluorinated alkyl-azobenzene derivatives (SFAB) can form stable Langmuir layers at the air-water interface. These systems combine the amphiphobic character of semifluorinated alkyl units as structure-directing motifs with photochromic behavior based on the well-known reversible cis-trans isomerization upon irradiation with UV and visible light. Herein, we report our investigations of the structural and dynamic tunability of these SFAB layers at the air-water interface in response to an external light stimulus. The monolayer structures and properties of [4-(heptadecafluorooctyl)phenyl](4-octylphenyl)diazene (F8-azo-H8) and bis(4-octylphenyl)diazene (H8-azo-H8) were studied by neutron reflectivity, surface pressure-area isotherms with compression-expansion cycles, and interfacial rheology. We find that UV irradiation reversibly influences the packing behavior of the azobenzene molecules and interpret this as a transition from organized layer structures with the main axis of the molecule vertically oriented in the trans form to random packing of the cis isomer. Interestingly, this trans-cis isomerization leads to an increase in surface pressure, which is accompanied by a decrease in viscoelastic moduli. These results suggest ways of tailoring the properties of responsive fluid interfaces.

8.
J Chem Phys ; 143(10): 104202, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374026

RESUMO

We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

9.
Opt Lett ; 38(8): 1224-6, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595438

RESUMO

We demonstrate a method to increase the sensitivity of the s-p phase shift under total internal reflection (TIR) for optical sensing. This is achieved by the introduction of two simple dielectric layers to the TIR surface of a fused silica prism. The enhanced sensitivity is demonstrated using evanescent-wave cavity-ring-down-ellipsometry by measuring the refractive index of liquid mixtures and by studying the adsorption of polymers to the TIR surface of the fused silica prism.

10.
Appl Opt ; 52(5): 1086-93, 2013 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-23400071

RESUMO

We monitor the adsorption of Rhodamine 800, and the sedimentation of a polytetrafluoroethylene (PTFE) suspension at the surface of a fused-silica prism, by measuring both the absorption and s-p phase shift Δ of a 740 nm probe laser beam, using evanescent-wave cavity ringdown ellipsometry (EW-CRDE). The two systems demonstrate the complementary strengths of EW-CRDE, as the progress of adsorption of the Rhodamine 800 dye can only be observed sensitively via the measurement of absorption, whereas the progress of sedimentation of PTFE can only be observed sensitively via the measurement of Δ. We show that EW-CRDE provides a sensitive method for the measurement of Δ and demonstrates precision in Δ of about 10(-4) deg.

11.
ACS Macro Lett ; 12(12): 1665-1671, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37992200

RESUMO

The development of single-ion solid polymer electrolytes with high ion conductivity holds the key to the realization of safe, long-lasting, high-energy batteries. Here we introduce the use of core-shell nanostructured polyanionic particles, composed of polyanion asymmetric miktoarm stars with a large number of glassy polystyrene-based polyanion arms that complement longer poly(ethylene oxide), PEO, arms, as additives to low molecular weight, liquid PEO. Due to the proposed macromolecular design approach, the polyanion particles are well dispersed for wt % ≤ 55 that enables the formation of a nanostructured single-ion electrolyte with highly interconnected channels composed of liquid PEO that promotes fast ion transport. Noticeably, while the ion conductivity remains fairly unaffected and close to 10-5 S/cm at room temperature with nanoparticle loading, the shear modulus monotonically increases by several order of magnitudes indicating a very strong decoupling between the antagonistic properties of mechanical modulus and ion conductivity.

12.
Opt Lett ; 37(13): 2487-9, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743430

RESUMO

We report on the versatile effect of weak red laser light impinging on diblock copolymer [poly(isoprene-b-styrene)] dispersions in two selective solvents for each block. In the strongly scattering but transparent micellar solutions in hexane (a good solvent for polyisoprene), higher refractive index copolymer-rich fibers were formed. In the turbid dispersions of the same copolymer in ethyl acetate (a good solvent for polystyrene), the effect of self-induced transparency was observed. A two-step patterning mechanism caused the generation of a transparent microchannel, increasing light transmission. The analogy between the current effect and that observed in homopolymer polyisoprene solutions in different solvents is discussed toward an understanding of the unanticipated light-soft-matter interaction.

13.
J Phys Chem B ; 126(35): 6713-6724, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36018571

RESUMO

A methodology to investigate the linear viscoelastic properties of complex fluids at elevated pressures (up to 120 MPa) is presented. It is based on a dynamic light scattering (DLS) setup coupled with a stainless steel chamber, where the test sample is pressurized by means of an inert gas. The viscoelastic spectra are extracted through passive microrheology. We discuss an application to hydrogen-bonding motif 2,4-bis(2-ethylhexylureido)toluene (EHUT), which self-assembles into supramolecular structures (tubes and filaments) in apolar solvents dodecane and cyclohexane. High levels of pressure (roughly above 20 MPa) are found to slow down the terminal relaxation process; however, the increases in the entanglement plateau modulus and the associated persistence length are not significant. The concentration dependence of the plateau modulus, relaxation times (fast and slow), and correlation length is practically the same for all pressures and exhibits distinct power-law behavior in different regimes. Within the tube phase in dodecane, the relative viscosity increment is weakly enhanced with increasing pressure and reaches a plateau at about 60 MPa. In fact, depending on concentration, the application of pressure in the tube regime may lead to a transition from a viscous (unentangled) to a viscoelastic (partially entangled to well-entangled) solution. For well-entangled, long tubes, the extent of the plateau regime (ratio of high- to low-moduli crossover frequencies) increases with pressure. The collective information from these observations is summarized in a temperature-pressure state diagram. These findings provide ingredients for the formulation of a solid theoretical framework to better understand and exploit the role of pressure in the structure and dynamics of supramolecular polymers.


Assuntos
Reologia , Viscosidade
14.
ACS Photonics ; 9(2): 722-728, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35211646

RESUMO

Low-power visible light can lead to spectacular nonlinear effects in soft-matter systems. The propagation of visible light through transparent solutions of certain polymers can experience either self-focusing or defocusing nonlinearity, depending on the solvent. We show how the self-focusing and defocusing responses can be captured by a nonlinear propagation model using local spatial and time-integrating responses. We realize a remarkable pattern formation in ternary solutions and model it assuming a linear combination of the self-focusing and defocusing nonlinearities in the constituent solvents. This versatile response of solutions to light irradiation may introduce a new approach for self-written waveguides and patterns.

15.
Phys Chem Chem Phys ; 13(10): 4318-25, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21258703

RESUMO

Synchrotron small angle X-ray scattering (SAXS) was used to characterize silicalite-1 zeolite crystallization from TEOS/TPAOH/water clear sol. SAXS patterns were recorded over a broad range of length scales, enabling the simultaneous monitoring of nanoparticles and crystals occurring at various stages of the synthesis. A simple two-population model accurately described the patterns. Nanoparticles were modeled by polydisperse core-shell spheres and crystals by monodisperse oblate ellipsoids. These models were consistent with TEM images. The SAXS results, in conjunction with in situ light scattering, showed that nucleation of crystals occurred in a short period of time. Crystals were uniform in size and shape and became increasingly anisotropic during growth. In the presence of nanoparticles, crystal growth was fast. During crystal growth, the number of nanoparticles decreased gradually but their size was constant. These observations suggested that the nanoparticles were growth units in an aggregative crystal growth mechanism. Crystals grown in the presence of nanoparticles developed a faceted habit and intergrowths. In the final stages of growth, nanoparticles were depleted. Concurrently, the crystal growth rate decreased significantly.

16.
ACS Macro Lett ; 10(3): 321-326, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35549059

RESUMO

We utilize dynamic light scattering (DLS) and passive microrheology to examine the phase behavior of a supramolecular polymer at very high pressures. The monomer, 2,4-bis(2-ethylhexylureido)toluene (EHUT), self-assembles into supramolecular polymeric structures in the nonpolar solvent cyclohexane by means of hydrogen bonding. By varying the concentration and temperature at atmospheric pressure, the formation of the viscoelastic network (at lower temperatures) and predominantly viscous phases, based on self-assembled tube and filament structures, respectively, has been established. The associated changes in the rheological properties have been attributed to a structural thickness transition. Here, we investigate the effects of pressure variation from atmospheric up to 1 kbar at a given concentration. We construct a temperature-pressure diagram that reveals the predominance of the viscoelastic network phase at high pressures. The transition from the viscoelastic network organization of the tubes to a weaker viscous-dominated structure of the filaments is rationalized by using the Clapeyron equation, which yields an associated volume change of about 8 Å3 per EHUT molecule. This change is further explained by means of Molecular Dynamics simulations of the two phases, which show a decrease in the molecular volume at the filament-tube transition, originating from increased intermolecular contacts in the tube with respect to the filament. These findings offer insights into the role of pressure in stabilizing self-assemblies.


Assuntos
Polímeros , Ligação de Hidrogênio , Polímeros/química , Reologia , Temperatura , Viscosidade
17.
J Chem Phys ; 131(12): 121101, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791842

RESUMO

We demonstrate the enhancement of ellipsometric measurements by multiple reflections of a polarized light pulse on a highly reflective target surface, using an optical cavity. The principle is demonstrated by measuring the adsorbed amount of a molecular vapor (fenchone) onto the ring-cavity mirrors. A phase shift sensitivity of about 10(-2) degrees in a single laser pulse is achieved in 1 micros. Further improvements are discussed that should allow sensitivities of at least 10(-4) degrees , surpassing current commercial ellipsometers, but also surpassing their time resolution by several orders of magnitude, allowing the uses of sensitive ellipsometry to be expanded to include the study of fast surface phenomena with submicrosecond resolution.

18.
Macromolecules ; 52(9): 3342-3350, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31496546

RESUMO

Well-defined dendronized polymers (denpols) bearing high-generation dendron are attractive nano-objects as high persistency provides distinct properties, contrast to the random coiled linear polymers However, their syntheses via graft-through approach have been very challenging due to their structural complexity and steric hindrance retarding polymerization. Here, we report the first example of the synthesis of poly(norbornene) (PNB) containing ester dendrons up to the sixth generation (G6) by ring-opening metathesis polymerization. This is the highest generation ever polymerized among dendronized polymers prepared by graft-through approach, producing denpols with molecular weight up to 1960 kg/mol. Combination of size-exclusion chromatography, light scattering, and neutron scattering allowed a thorough structural study of these large denpols in dilute solution. A semiflexible cylinder model was successfully applied to represent both the static and dynamic experimental quantities yielding persistent length (l p), cross-sectional radius (R cs), and contour length (L). The denpol persistency seemed to increase with generation, with l p reaching 27 nm (Kuhn length 54 nm) for PNB-G6, demonstrating a rod-like conformation. Poly(endo-tricycle[4.2.2.0]deca-3,9-diene) (PTD) denpols exhibited larger persistency than the PNB analogues of the same generation presumably due to the higher grafting density of the PTD denpols. As the dendritic side chains introduce shape anisotropy into the denpol backbone, future work will entail a study of these systems in the concentrated solutions and melts.

19.
Soft Matter ; 4(7): 1443-1447, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32907110

RESUMO

We employ a dynamic micro light scattering technique to probe the thermal concentration fluctuations in surface-attached poly-N-isopropylacrylamide (PNIPAAm) gel layers swollen in ethanol as a good solvent. At the equilibrium swelling state, the relaxation function exhibits two decays in the time range between microseconds and seconds and the characteristic rates display a pure diffusive behavior. The fast cooperative diffusion increases with crosslinking density as a result of the decrease in the dynamic network mesh size. This increase is significantly stronger than the concentration dependence of the cooperative diffusion in uncrosslinked linear PNIPPAm solutions. Uniaxial swelling due to the surface attachment and structural inhomogeneities intrinsic to photo-crosslinked gels alter the dynamics of the surface anchored networks compared to the solutions. In contrast to the frozen inhomogeneities in conventional gels, the slow diffusion in the present anchored layers was found to be ergodic. It might relate to structural inhomogeneities but its nature is not clarified yet.

20.
Chem Phys Lipids ; 139(1): 20-31, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16289511

RESUMO

Phospholipases D (PLD) catalyse hydrolysis and transphosphatidylation reactions in phospholipids. In the present study, the hydrolytic activity for cabbage PLD was investigated with five different substrates (dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylcholine (DPPC), didecanoylphosphatidylcholine (DDPC), 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine and lyso-phosphatidylcholine (lyso-PC)) in solution or adsorbed on a silica matrix. In the specific buffer solutions, where the substrates were proved to form large multilamellar polydisperse aggregates, PLD showed preference for DPPC > DPPE > DDPC > 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine > lyso-PC. When the substrates were adsorbed on the silica matrix, PLD hydrolysed 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine and lyso-PC, DDPC, but not DPPC or DPPE. Theoretical studies of the simplest possible adducts between the phospholipids and the silica matrix were performed. Examination of local geometries of DPPC showed a significant blocking of the P-O-X bond-prone to hydrolysis, which could possibly block the access of PLD. Immobilization of phospholipids could be applied for improving the yield of reactions catalysed by PLD as well as for performing a targeted production of short-chain length phosphatidic acid analogs.


Assuntos
Fosfolipase D/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Adsorção , Brassica/enzimologia , Fenômenos Químicos , Físico-Química , Eletroquímica , Hidrólise , Técnicas In Vitro , Luz , Modelos Moleculares , Espalhamento de Radiação , Dióxido de Silício , Soluções , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA