Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(9): 2672-2684, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148527

RESUMO

Virus-like particles-based vaccines have been gaining interest in recent years. The manufacturing of these particles includes their production by cell culture followed by their purification to meet the requirements of its final use. The presence of host cell extracellular vesicles represents a challenge for better virus-like particles purification, because both share similar characteristics which hinders their separation. The present study aims to compare some of the most used downstream processing technologies for capture and purification of virus-like particles. Four steps of the purification process were studied, including a clarification step by depth filtration and filtration, an intermediate step by tangential flow filtration or multimodal chromatography, a capture step by ion exchange, heparin affinity and hydrophobic interaction chromatography and finally, a polishing step by size exclusion chromatography. In each step, the yields were evaluated by percentage of recovery of the particles of interest, purity, and elimination of main contaminants. Finally, a complete purification train was implemented using the best results obtained in each step. A final concentration of 1.40 × 1010 virus-like particles (VLPs)/mL with a purity of 64% after the polishing step was achieved, with host cell DNA and protein levels complaining with regulatory standards, and an overall recovery of 38%. This work has resulted in the development of a purification process for HIV-1 Gag-eGFP virus-like particles suitable for scale-up.


Assuntos
HIV-1 , Vacinas de Partículas Semelhantes a Vírus , Vacinas de Partículas Semelhantes a Vírus/genética , Cromatografia em Gel , Filtração/métodos , Técnicas de Cultura de Células
2.
Vaccines (Basel) ; 10(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35214708

RESUMO

Virus-like particles (VLPs) constitute a promising approach to recombinant vaccine development. They are robust, safe, versatile and highly immunogenic supra-molecular structures that closely mimic the native conformation of viruses without carrying their genetic material. HIV-1 Gag VLPs share similar characteristics with wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, making them a suitable platform for the expression of its spike membrane protein to generate a potential vaccine candidate for COVID-19. This work proposes a methodology for the generation of SARS-CoV-2 VLPs by their co-expression with HIV-1 Gag protein. We achieved VLP functionalization with coronavirus spike protein, optimized its expression using a design of experiments (DoE). We also performed the bioprocess at a bioreactor scale followed by a scalable downstream purification process consisting of two clarifications, an ion exchange and size-exclusion chromatography. The whole production process is conceived to enhance its transferability at current good manufacturing practice (cGMP) industrial scale manufacturing. Moreover, the approach proposed could be expanded to produce additional Gag-based VLPs against different diseases or COVID-19 variants.

3.
Vaccines (Basel) ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696262

RESUMO

Gag-based virus-like particles (VLPs) have high potential as scaffolds for the development of chimeric vaccines and delivery strategies. The production of purified preparations that can be preserved independently from cold chains is highly desirable to facilitate distribution and access worldwide. In this work, a nimble purification has been developed, facilitating the production of Gag VLPs. Suspension-adapted HEK 293 cells cultured in chemically defined cell culture media were used to produce the VLPs. A four-step downstream process (DSP) consisting of membrane filtration, ion-exchange chromatography, polishing, and lyophilization was developed. The purification of VLPs from other contaminants such as host cell proteins (HCP), double-stranded DNA, or extracellular vesicles (EVs) was confirmed after their DSP. A concentration of 2.2 ± 0.8 × 109 VLPs/mL in the lyophilized samples was obtained after its storage at room temperature for two months. Morphology and structural integrity of purified VLPs was assessed by cryo-TEM and NTA. Likewise, the purification methodologies proposed here could be easily scaled up and applied to purify similar enveloped viruses and vesicles.

4.
AMB Express ; 9(1): 139, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486941

RESUMO

Classical swine fever (CSF) is a contagious disease that causes a high mortality to domestic and wild pigs. Its causative agent is an enveloped Pestivirus named Classical Swine Fever Virus (CSFV). Due to the huge economic affectations produced by this disease to porcine industry, several vaccines have been developed using principally the CSFV E2 glycoprotein. Recently, a subunit vaccine based on this structural protein of the CSFV fused to the porcine CD154 molecule as immunomodulator named E2-CD154 was assayed by us. This chimeric protein was produced in the Human Embryonic Kidney (HEK-293) cell line. In this work, the growth and the expression profiles of HEK-293 E2-CD154 cells in four commercially available culture media were studied. The oligosaccharide structures in the N-glycosylation patterns of the E2-CD154 protein produced by this cell line in 10 L fermenters with two different culture media were also analyzed. In addition, the neutralizing antibody response generated in mice vaccinated with these antigens was assayed. Our results suggest that the culture media CDM4HEK293 and SFM4HEK293 which are recommended for HEK-293 growth are the best choice to growth the cell clone expressing the E2-CD154 protein. The glycosylation pattern and the neutralizing antibody response generated by the E2-CD154 protein were independent of the culture medium used which demonstrates the high reproducibility and consistency among protein batches produced by HEK-293 cells even in different culture conditions.

5.
Vaccine ; 35(34): 4437-4443, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28688785

RESUMO

Classical swine fever is an economically important, highly contagious disease of swine worldwide. Subunit vaccines are a suitable alternative for the control of classical swine fever. However, such vaccines have as the main drawback the relatively long period of time required to induce a protective response, which hampers their use under outbreak conditions. In this work, a lentivirus-based gene delivery system is used to obtain a stable recombinant HEK 293 cell line for the expression of E2-CSFV antigen fused to porcine CD154 as immunostimulant molecule. The E2-CD154 chimeric protein was secreted into the medium by HEK293 cells in a concentration around 50mg/L in suspension culture conditions using spinner bottles. The E2-CD154 immunized animals were able to overcome the challenge with a high virulent CSF virus strain performed 7days after a unique dose of the vaccine without clinical manifestations of the disease. Specific anti-CSFV neutralizing antibodies and IFN-γ were induced 8days after challenge equivalent to 14days post-vaccination. The present work constitutes the first report of a subunit vaccine able to confer complete protection by the end of the first week after a single vaccination. These results suggest that the E2-CD154 antigen could be potentially used under outbreak conditions to stop CSFV spread and for eradication programs in CSF enzootic areas.


Assuntos
Ligante de CD40/imunologia , Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Peste Suína Clássica/imunologia , Células HEK293 , Humanos , Lentivirus/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Suínos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA