Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208577

RESUMO

Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning.


Assuntos
PPAR gama/química , PPAR gama/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Humanos , Ligantes , Simulação de Dinâmica Molecular , PPAR gama/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade , Termodinâmica , Transcrição Gênica , Ureia/farmacologia
2.
Biochem Biophys Rep ; 11: 99-104, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955774

RESUMO

Bromodomains (BRDs) are small protein domains often present in large multidomain proteins involved in transcriptional regulation in eukaryotic cells. They currently represent valuable targets for the development of inhibitors of aberrant transcriptional processes in a variety of human diseases. Here we report urea-induced equilibrium unfolding experiments monitored by circular dichroism (CD) and fluorescence on two structurally similar BRDs: BRD2(2) and BRD4(1), showing that BRD4(1) is more stable than BRD2(2). Moreover, we report a description of their kinetic folding mechanism, as obtained by careful analysis of stopped-flow and temperature-jump data. The presence of a high energy intermediate for both proteins, suggested by the non-linear dependence of the folding rate on denaturant concentration in the millisec time regime, has been experimentally observed by temperature-jump experiments. Quantitative global analysis of all the rate constants obtained over a wide range of urea concentrations, allowed us to propose a common, three-state, folding mechanism for these two BRDs. Interestingly, the intermediate of BRD4(1) appears to be more stable and structurally native-like than that populated by BRD2(2). Our results underscore the role played by structural topology and sequence in determining and tuning the folding mechanism.

3.
PLoS One ; 11(7): e0159180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27403962

RESUMO

Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding.


Assuntos
Mutação de Sentido Incorreto , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA