Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 13: 355, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849360

RESUMO

BACKGROUND: The androgen receptor plays a critical role throughout the progression of prostate cancer and is an important drug target for this disease. While chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) is becoming an essential tool for studying transcription and chromatin modification factors, it has rarely been employed in the context of drug discovery. RESULTS: Here we report changes in the genome-wide AR binding landscape due to dose-dependent inhibition by drug-like small molecules using ChIP-Seq. Integration of sequence analysis, transcriptome profiling, cell viability assays and xenograft tumor growth inhibition studies enabled us to establish a direct cistrome-activity relationship for two novel potent AR antagonists. By selectively occupying the strongest binding sites, AR signaling remains active even when androgen levels are low, as is characteristic of first-line androgen ablation therapy. Coupled cistrome and transcriptome profiling upon small molecule antagonism led to the identification of a core set of AR direct effector genes that are most likely to mediate the activities of targeted agents: unbiased pathway mapping revealed that AR is a key modulator of steroid metabolism by forming a tightly controlled feedback loop with other nuclear receptor family members and this oncogenic effect can be relieved by antagonist treatment. Furthermore, we found that AR also has an extensive role in negative gene regulation, with estrogen (related) receptor likely mediating its function as a transcriptional repressor. CONCLUSIONS: Our study provides a global and dynamic view of AR's regulatory program upon antagonism, which may serve as a molecular basis for deciphering and developing AR therapeutics.


Assuntos
Antagonistas de Receptores de Andrógenos/metabolismo , Receptores Androgênicos/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antagonistas de Receptores de Andrógenos/toxicidade , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/tratamento farmacológico , Ligação Proteica , Receptores Androgênicos/química , Receptores Androgênicos/genética , Análise de Sequência de DNA , Bibliotecas de Moléculas Pequenas/uso terapêutico , Bibliotecas de Moléculas Pequenas/toxicidade , Transplante Heterólogo
2.
Mod Pathol ; 24(1): 64-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20852590

RESUMO

P-cadherin is a calcium-dependent cell-cell adhesion glycoprotein. P-cadherin expression is restricted to the myoepithelial cells in normal breast tissue, and aberrant staining has also been described in invasive tumors. Several small studies have reported P-cadherin as a marker of poor outcome in breast cancer patients but its prognostic significance in relation to other variables has not been established in a large series of breast cancers. A tissue microarray was constructed from 3992 cases of invasive breast carcinoma, and P-cadherin expression was evaluated using immunohistochemistry. Median follow-up was 12.5 years. The immunohistochemistry-based definitions of cancer subtypes were luminal (ER+ or PR+/HER2-), luminal/HER2+ (ER+ or PR+/HER2+), HER2+ (ER-/PR-/HER2+), and basal (ER-/PR-/HER2-/CK5/6+ or EGFR+). Clinical covariate and biomarker associations were assessed using contingency tables, and Pearson's χ(2) or Fisher's exact test. Survival associations were assessed using Kaplan-Meier plots, logrank and Breslow tests, and Cox proportional hazards regression analysis. P-cadherin was expressed in 34.8% (1290/3710, 50% cut point) of cases. P-cadherin staining was strongly associated with HER2+ and basal carcinoma subtypes (P<0.0005). P-cadherin-positive patients showed significantly poorer short-term (0-10 years) overall survival, disease-specific survival, distant relapse-free interval, and locoregional relapse-free interval in univariable models (P<0.05). In multivariable Cox models containing standard clinical covariates and cancer subtypes, P-cadherin did not show independent prognostic value. P-cadherin expression was positively associated with histological grade, chemotherapy, Ki-67, EGFR, CK5/6, p53, YB-1, and HER2 expression (P<0.002), and negatively associated with age at diagnosis, ER, PR, and Bcl-2 expression (P<0.0005). This study shows the value of P-cadherin as a marker of poor prognosis. The large sample size of this series clarifies contradictory findings of many smaller studies. P-cadherin positivity is associated with high-grade tumor subtypes and well-established markers of poor prognosis, and may represent a promising antibody therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/metabolismo , Adulto , Idoso , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/mortalidade , Carcinoma Lobular/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Análise Serial de Tecidos
3.
Expert Opin Investig Drugs ; 29(11): 1199-1208, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32869671

RESUMO

INTRODUCTION: Triple negative breast cancer (TNBC) was once thought to be an insurmountable disease marked by a lack of targeted treatments. However, we are now witnessing the dawn of targeted therapies for TNBC in which progress has stemmed from an improved understanding of the components that make TNBC unique. The identification of biomarkers, such as BRCA1/2, PIK3CA and RSK2, have advanced the field remarkably and there is considerable interest in finding novel therapeutics for TNBC that offer durable clinical benefit with fewer adverse events. AREAS COVERED: We discuss phase I/II trials of new and emerging targeted therapies for TNBC, according to ClinicalTrials.gov up to June 2020. Although the emphasis is on ongoing and completed early phase trials, we also highlight pivotal studies that have led to the approval of new targeted classes of drugs for TNBC, with a focus on outcomes and common adverse events of each class of therapy. EXPERT OPINION: The way forward for TNBC treatment is through precision medicine. The use of novel agents matched with biomarkers to identify patients with the best chance of sustainable response offers new hope. We now have great potential for improving the outcomes for patients with TNBC.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Biomarcadores Tumorais/metabolismo , Drogas em Investigação/farmacologia , Feminino , Humanos , Medicina de Precisão , Neoplasias de Mama Triplo Negativas/patologia
4.
Bioorg Med Chem Lett ; 19(19): 5613-6, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19729306

RESUMO

Pin1 is a member of the cis-trans peptidyl-prolyl isomerase family with potential anti-cancer therapeutic value. Here we report structure-based de novo design and optimization of novel Pin1 inhibitors. Without a viable lead from internal screenings, we designed a series of novel Pin1 inhibitors by interrogating and exploring a protein crystal structure of Pin1. The ligand efficiency of the initial concept molecule was optimized with integrated SBDD and parallel chemistry approaches, resulting in a more attractive lead series.


Assuntos
Inibidores Enzimáticos/química , Peptidilprolil Isomerase/antagonistas & inibidores , Sequência de Aminoácidos , Sítios de Ligação , Técnicas de Química Combinatória , Simulação por Computador , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Relação Estrutura-Atividade
5.
Cancer Res ; 67(9): 4408-17, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483355

RESUMO

The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been implicated in the progression of several human cancers and are attractive therapeutic targets. PF-2341066 was identified as a potent, orally bioavailable, ATP-competitive small-molecule inhibitor of the catalytic activity of c-Met kinase. PF-2341066 was selective for c-Met (and anaplastic lymphoma kinase) compared with a panel of >120 diverse tyrosine and serine-threonine kinases. PF-2341066 potently inhibited c-Met phosphorylation and c-Met-dependent proliferation, migration, or invasion of human tumor cells in vitro (IC(50) values, 5-20 nmol/L). In addition, PF-2341066 potently inhibited HGF-stimulated endothelial cell survival or invasion and serum-stimulated tubulogenesis in vitro, suggesting that this agent also exhibits antiangiogenic properties. PF-2341066 showed efficacy at well-tolerated doses, including marked cytoreductive antitumor activity, in several tumor models that expressed activated c-Met. The antitumor efficacy of PF-2341066 was dose dependent and showed a strong correlation to inhibition of c-Met phosphorylation in vivo. Near-maximal inhibition of c-Met activity for the full dosing interval was necessary to maximize the efficacy of PF-2341066. Additional mechanism-of-action studies showed dose-dependent inhibition of c-Met-dependent signal transduction, tumor cell proliferation (Ki67), induction of apoptosis (caspase-3), and reduction of microvessel density (CD31). These results indicated that the antitumor activity of PF-2341066 may be mediated by direct effects on tumor cell growth or survival as well as antiangiogenic mechanisms. Collectively, these results show the therapeutic potential of targeting c-Met with selective small-molecule inhibitors for the treatment of human cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Crizotinibe , Cães , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/irrigação sanguínea , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer Ther ; 7(4): 818-28, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18413795

RESUMO

AG-012986 is a multitargeted cyclin-dependent kinase (CDK) inhibitor active against CDK1, CDK2, CDK4/6, CDK5, and CDK9, with selectivity over a diverse panel of non-CDK kinases. Here, we report the potent antitumor efficacies of AG-012986 against multiple tumor lines in vitro and in vivo. AG-012986 showed antiproliferative activities in vitro with IC(50)s of <100 nmol/L in 14 of 18 tumor cell lines. In vivo, significant antitumor efficacy induced by AG-012986 was seen (tumor growth inhibition, >83.1%) in 10 of 11 human xenograft tumor models when administered at or near the maximum tolerated dose for 8 or 12 days. AG-012986 caused dose-dependent hypophosphorylation at Ser(795) of the retinoblastoma protein, cell cycle arrest, and apoptosis in vitro. Colony-forming assays indicated that the potency of AG-012986 substantially decreased with treatment time of <24 h. In vivo, AG-012986 also showed dose-dependent retinoblastoma Ser(795) hypophosphorylation, cell cycle arrest, decreased Ki-67 tumor staining, and apoptosis in conjunction with antitumor activity. Studies comparing i.p. bolus with s.c. implanted minipump dosing regimens revealed that in vivo efficacy correlated with the duration of minimally effective plasma levels rather than maximal drug plasma levels. Dosing optimization of AG-012986 provided guidance for selecting a treatment schedule to achieve the best antitumor efficacy while minimizing the risk of adverse side effects.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Benzamidas/farmacocinética , Western Blotting , Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ensaio de Unidades Formadoras de Colônias , Humanos , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Nus , Camundongos SCID , Fosforilação/efeitos dos fármacos , Proteína do Retinoblastoma/metabolismo , Tiazóis/farmacocinética , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer Ther ; 6(12 Pt 1): 3314-22, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18089725

RESUMO

A t(2;5) chromosomal translocation resulting in expression of an oncogenic kinase fusion protein known as nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) has been implicated in the pathogenesis of anaplastic large-cell lymphoma (ALCL). PF-2341066 was recently identified as a p.o. bioavailable, small-molecule inhibitor of the catalytic activity of c-Met kinase and the NPM-ALK fusion protein. PF-2341066 also potently inhibited NPM-ALK phosphorylation in Karpas299 or SU-DHL-1 ALCL cells (mean IC(50) value, 24 nmol/L). In biochemical and cellular screens, PF-2341066 was shown to be selective for c-Met and ALK at pharmacologically relevant concentrations across a panel of >120 diverse kinases. PF-2341066 potently inhibited cell proliferation, which was associated with G(1)-S-phase cell cycle arrest and induction of apoptosis in ALK-positive ALCL cells (IC(50) values, approximately 30 nmol/L) but not ALK-negative lymphoma cells. The induction of apoptosis was confirmed using terminal deoxyribonucleotide transferase-mediated nick-end labeling and Annexin V staining (IC(50) values, 25-50 nmol/L). P.o. administration of PF-2341066 to severe combined immunodeficient-Beige mice bearing Karpas299 ALCL tumor xenografts resulted in dose-dependent antitumor efficacy with complete regression of all tumors at the 100 mg/kg/d dose within 15 days of initial compound administration. A strong correlation was observed between antitumor response and inhibition of NPM-ALK phosphorylation and induction of apoptosis in tumor tissue. In addition, inhibition of key NPM-ALK signaling mediators, including phospholipase C-gamma, signal transducers and activators of transcription 3, extracellular signal-regulated kinases, and Akt by PF-2341066 were observed at concentrations or dose levels, which correlated with inhibition of NPM-ALK phosphorylation and function. Collectively, these data illustrate the potential clinical utility of inhibitors of NPM-ALK in treatment of patients with ALK-positive ALCL.


Assuntos
Antineoplásicos/farmacologia , Linfoma Anaplásico de Células Grandes/patologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridinas/farmacologia , Quinase do Linfoma Anaplásico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Crizotinibe , Ensaios de Seleção de Medicamentos Antitumorais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos SCID , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Pirazóis , Receptores Proteína Tirosina Quinases
8.
Mol Cancer Ther ; 4(7): 1096-104, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16020667

RESUMO

Organ preservation protocols in head and neck squamous cell carcinoma (HNSCC) are limited by tumors that fail to respond. We observed that larynx preservation and response to chemotherapy is significantly associated with p53 overexpression, and that most HNSCC cell lines with mutant p53 are more sensitive to cisplatin than those with wild-type p53. To investigate cisplatin resistance, we studied two HNSCC cell lines, UM-SCC-5 and UM-SCC-10B, and two resistant sublines developed by cultivation in gradually increasing concentrations of cisplatin. The cisplatin-selected cell lines, UM-SCC-5PT and UM-SCC-10BPT, are 8 and 1.5 times more resistant to cisplatin than the respective parental cell lines, respectively. The parental lines overexpress p53 and contain p53 mutations but the cisplatin-resistant cell lines do not, indicating that cells containing mutant p53 were eliminated during selection. Bcl-x(L) expression increased in the cisplatin-resistant lines relative to the parental lines, whereas Bcl-2 expression was high in the parental lines and decreased in the cisplatin-resistant lines. Thus, cisplatin selected for wild-type p53 and high Bcl-x(L) expression in these cells. We tested a small-molecule BH3 mimetic, (-)-gossypol, which binds to the BH3 domain of Bcl-2 and Bcl-x(L), for activity against the parental and cisplatin-resistant cell lines. At physiologically attainable levels, (-)-gossypol induces apoptosis in 70% to 80% of the cisplatin-resistant cells but only in 25% to 40% of the parental cells. Thus, cisplatin-resistant cells seem to depend on wild-type p53 and Bcl-x(L) for survival and BH3 mimetic agents, such as (-)-gossypol, may be useful adjuncts to overcome cisplatin resistance in HNSCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/farmacologia , Gossipol/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Gossipol/química , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Mimetismo Molecular , Mutação , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
9.
Cancer Chemother Pharmacol ; 55(1): 1-11, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15378272

RESUMO

In order to identify genes whose expression is associated with resistance to the chemotherapeutic agent oxaliplatin, transcripts differentially expressed between an oxaliplatin sensitive and a stably resistant subline were compared in six independent replicates using Stanford cDNA microarrays for five cell lines. "Significance analysis of microarrays" (SAM) was used to identify genes whose expression was statistically significantly different in the sensitive versus resistant members of each cell line pair. The biochemical pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were searched to identify those pathways in which the number of SAM-identified genes exceeded the number expected. This identified four pathways in which upregulated genes were significantly associated with resistance in two of the cell line pairs, and two pathways in which the association was found in three cell line pairs. The search also identified 12 pathways in which downregulated genes were associated with resistance in two cell line pairs and one pathway in which the association reached statistical significance in three cell line pairs. Pathways identified included the ribosome pathway, the Huntington's disease pathway that includes caspase 8, and the ATP synthesis pathways. Determination of the chromosomal location of each SAM-identified gene revealed several locales within which genes lay in close proximity, including three genes (APACD, IF-2, and REV1L) located on chromosome 2 that lie immediately adjacent to each other and were significantly upregulated in three of five cell line pairs. Biochemical pathway and chromosomal mapping of genes identified by SAM as differentially expressed in related cell line pairs points to mechanisms and chromosomal sites not previously suspected of association with the oxaliplatin-resistant phenotype.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Compostos Organoplatínicos/farmacologia , Trifosfato de Adenosina/biossíntese , Carcinoma/patologia , Carcinoma de Células Escamosas/patologia , Bases de Dados Genéticas , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Ovarianas/patologia , Oxaliplatina , Fenótipo , Células Tumorais Cultivadas , Regulação para Cima
10.
Methods Mol Med ; 111: 197-231, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15911981

RESUMO

This chapter presents a protocol for using cDNA microarrays to acquire gene expression profiles that characterize anticancer drug sensitivity. The protocol includes steps for drug exposure, RNA isolation, preparation of fluorescently labeled samples, microarray hybridization, data processing, and data analysis. In addition to the detailed protocol, important experimental design issues are discussed, and some preliminary experiments are recommended.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , RNA Neoplásico/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Complementar/metabolismo , Corantes Fluorescentes/farmacologia , Humanos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Neoplásico/análise , Estatística como Assunto , Fatores de Tempo , Toxicogenética
12.
Mol Cancer Ther ; 12(5): 567-76, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23493310

RESUMO

Resistance to antiandrogen drugs, like MDV3100, occurs in patients with castration-resistant prostate cancer (CRPC). Thus, preventing or treating antiandrogen resistance is a major clinical challenge. We identified a novel antiandrogen, Compound 30, and compared its efficacy with MDV3100. We found that Compound 30 inhibits androgen receptor (AR) activity in LNCaP cells, C4-2 cells, as well as MDV3100-resistant cell lines. Compared with MDV3100, Compound 30 treatment induces greater reduction in AR, prostate-specific antigen (PSA), and AR transcriptional activity, and prevents AR nuclear translocation in AR-sensitive LNCaP cells. Compound 30 has antiproliferative effects in LNCaP cells, in castrate-resistant C4-2 cells, and those resistant to MDV3100. Compound 30 was equally as effective as MDV3100 in reducing tumor volume and PSA in vivo. More importantly, Compound 30 is effective at inhibiting AR activity in MDV3100-resistant cell lines and significantly prevented tumor growth and PSA increases in mice bearing MDV3100-resistant xenografts. Together, our data show that Compound 30 strongly inhibited AR activity and suppressed castration-resistant LNCaP growth as well as MDV3100-resistant cell growth in vitro and in vivo. These data provide a preclinical proof-of-principle that Compound 30 could be a promising next generation anti-AR agent, especially in the context of antiandrogen-resistant tumors.


Assuntos
Antagonistas de Androgênios/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Orquiectomia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/metabolismo , Compostos de Piridínio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transcrição Gênica , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Front Med ; 7(4): 462-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23820871

RESUMO

Evaluating the effects of novel drugs on appropriate tumor models has become crucial for developing more effective therapies that target highly tumorigenic and drug-resistant cancer stem cell (CSC) populations. In this study, we demonstrate that a subset of cancer cells with CSC properties may be enriched into tumor spheroids under stem cell conditions from a non-small cell lung cancer cell line. Treating these CSC-like cells with gemcitabine alone and a combination of gemcitabine and the novel CHK1 inhibitor PF-00477736 revealed that PF-00477736 enhances the anti-proliferative effect of gemcitabine against both the parental and the CSC-like cell populations. However, the CSC-like cells exhibited resistance to gemcitabine-induced apoptosis. Collectively, the spheroid-forming CSC-like cells may serve as a model system for understanding the mechanism underlying the drug resistance of CSCs and for guiding the development of better therapies that can inhibit tumor growth and eradicate CSCs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzodiazepinonas/administração & dosagem , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Pirazóis/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas , Gencitabina
15.
Mol Cancer Ther ; 12(6): 1002-15, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23729402

RESUMO

Here, we investigate the potential role of the PARP inhibitor rucaparib (CO-338, formerly known as AG014699 and PF-01367338) for the treatment of sporadic ovarian cancer. We studied the growth inhibitory effects of rucaparib in a panel of 39 ovarian cancer cell lines that were each characterized for mutation and methylation status of BRCA1/2, baseline gene expression signatures, copy number variations of selected genes, PTEN status, and sensitivity to platinum-based chemotherapy. To study interactions with chemotherapy, we used multiple drug effect analyses and assessed apoptosis, DNA fragmentation, and γH2AX formation. Concentration-dependent antiproliferative effects of rucaparib were seen in 26 of 39 (67%) cell lines and were not restricted to cell lines with BRCA1/2 mutations. Low expression of other genes involved in homologous repair (e.g., BCCIP, BRCC3, ATM, RAD51L1), amplification of AURKA or EMSY, and response to platinum-based chemotherapy was associated with sensitivity to rucaparib. Drug interactions with rucaparib were synergistic for topotecan, synergistic, or additive for carboplatin, doxorubicin or paclitaxel, and additive for gemcitabine. Synergy was most pronounced when rucaparib was combined with topotecan, which resulted in enhanced apoptosis, DNA fragmentation, and γH2AX formation. Importantly, rucaparib potentiated chemotherapy independent of its activity as a single agent. PARP inhibition may be a useful therapeutic strategy for a wider range of ovarian cancers bearing deficiencies in the homologous recombination pathway other than just BRCA1/2 mutations. These results support further clinical evaluation of rucaparib either as a single agent or as an adjunct to chemotherapy for the treatment of sporadic ovarian cancer.


Assuntos
Histonas/metabolismo , Indóis/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Poli(ADP-Ribose) Polimerases/metabolismo , Apoptose/efeitos dos fármacos , Proteína BRCA2/genética , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Histonas/genética , Humanos , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases , Topotecan/administração & dosagem , Ubiquitina-Proteína Ligases/genética
16.
Mol Cancer Ther ; 11(4): 1036-47, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22389468

RESUMO

The c-Met pathway has been implicated in a variety of human cancers for its critical role in tumor growth, invasion, and metastasis. PF-04217903 is a novel ATP-competitive small-molecule inhibitor of c-Met kinase. PF-04217903 showed more than 1,000-fold selectivity for c-Met compared with more than 150 kinases, making it one of the most selective c-Met inhibitors described to date. PF-04217903 inhibited tumor cell proliferation, survival, migration/invasion in MET-amplified cell lines in vitro, and showed marked antitumor activity in tumor models harboring either MET gene amplification or a hepatocyte growth factor (HGF)/c-Met autocrine loop at well-tolerated dose levels in vivo. Antitumor efficacy of PF-04217903 was dose-dependent and showed a strong correlation with inhibition of c-Met phosphorylation, downstream signaling, and tumor cell proliferation/survival. In human xenograft models that express relatively high levels of c-Met, complete inhibition of c-Met activity by PF-04217903 only led to partial tumor growth inhibition (38%-46%) in vivo. The combination of PF-04217903 with Recepteur d'origine nantais (RON) short hairpin RNA (shRNA) knockdown in the HT29 model that also expresses activated RON kinase-induced tumor cell apoptosis and resulted in enhanced antitumor efficacy (77%) compared with either PF-04217903 (38%) or RON shRNA alone (56%). PF-04217903 also showed potent antiangiogenic properties in vitro and in vivo. Furthermore, PF-04217903 strongly induced phospho-PDGFRß (platelet-derived growth factor receptor) levels in U87MG xenograft tumors, indicating a possible oncogene switching mechanism in tumor cell signaling as a potential resistance mechanism that might compromise tumor responses to c-Met inhibitors. Collectively, these results show the use of highly selective inhibition of c-Met and provide insight toward targeting tumors exhibiting different mechanisms of c-Met dysregulation.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazóis/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
MAbs ; 4(6): 710-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23007574

RESUMO

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72-96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Processos de Crescimento Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/imunologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Nus , Morfogênese/efeitos dos fármacos , Células NIH 3T3 , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/genética , Transgenes/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Lett ; 300(1): 30-9, 2011 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-20926183

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors. Following an investigation by Pfizer, Figures 2, 5B and 5C appear to be duplications and hence the conclusions in the manuscript cannot be verified. The Authors apologize for this inconvenience.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Melanoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Melanoma/patologia , Camundongos , Mutação , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
J Natl Cancer Inst ; 103(4): 334-46, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21183737

RESUMO

BACKGROUND: Mutations in BRCA1 and BRCA2 (BRCA1/2), components of the homologous recombination DNA repair (HRR) pathway, are associated with hereditary breast and ovarian cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors are selectively cytotoxic to animal cells with defective HRR, but results in human cancer cells have been contradictory. We undertook, to our knowledge, the first comprehensive in vitro and in vivo investigations of the antitumor activity of the PARP inhibitor AG014699 in human cancer cells carrying mutated or epigenetically silenced BRCA1/2. METHODS: We used nine human cell lines, four with nonmutated BRCA1/2 (MCF7, MDA-MB-231, and HCC1937-BRCA1 [breast cancer] and OSEC-2 [ovarian surface epithelial]), two with mutated BRCA1 (MDA-MB-436 and HCC1937 [breast cancer]), one with mutated BRCA2 (CAPAN-1 [pancreatic cancer]), one that was heterozygous for BRCA2 (OSEC-1 [ovarian surface epithelial]), and one with epigenetically silenced BRCA1 (UACC3199 [breast cancer]), and two Chinese hamster ovary cell lines, parental AA8 and XRCC3 mutated IRS 1SF. We assessed cytotoxicity, DNA damage, and HRR function. Antitumor activity of AG014699 was determined by growth of xenograft tumors (five mice per treatment group). Long-term safety of AG014699 was assessed. RESULTS: AG014699 (≤10 µM) was cytotoxic to cells with mutated BRCA1/2 or XRCC3 and to UACC3199 cells with epigenetically silenced BRCA1 but not to cells without BRCA1/2 or XRCC3 mutations or that were heterozygous for BRCA2 mutation. AG014699 induced DNA double-strand breaks in all nine cell lines studied. HRR was observed only in cells with functional BRCA1/2 proteins. Growth of xenograft tumors with BRCA1/2 mutations or with epigenetically silenced BRCA1 was reduced by AG014699 treatment, and combination treatment with AG014699 plus carboplatin was more effective than either drug alone. AG014699 was not toxic in mice with nonmutated or heterozygous BRCA2. CONCLUSION: Human cancer cells or xenograft tumors with mutated or epigenetically silenced BRCA1/2 were sensitive to AG014699 monotherapy, indicating a potential role for PARP inhibitors in sporadic human cancers.


Assuntos
Antineoplásicos/farmacologia , Metilação de DNA , Genes BRCA1 , Genes BRCA2 , Indóis/farmacologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Células CHO , Carboplatina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Transplante Heterólogo
20.
J Med Chem ; 54(21): 7693-704, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21936524

RESUMO

An aryloxy tetramethylcyclobutane was identified as a novel template for androgen receptor (AR) antagonists via cell-based high-throughput screening. Follow-up to the initial "hit" established 5 as a viable lead. Further optimization to achieve full AR antagonism led to the discovery of 26 and 30, both of which demonstrated excellent in vivo tumor growth inhibition upon oral administration in a castration-resistant prostate cancer (CRPC) animal model.


Assuntos
Antagonistas de Androgênios/síntese química , Antineoplásicos/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Ciclobutanos/síntese química , Pirazóis/síntese química , Administração Oral , Antagonistas de Androgênios/farmacocinética , Antagonistas de Androgênios/farmacologia , Androgênios/síntese química , Androgênios/farmacocinética , Androgênios/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Ciclobutanos/farmacocinética , Ciclobutanos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Pirazóis/farmacocinética , Pirazóis/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA