Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Anal Chem ; 93(9): 4317-4325, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33620193

RESUMO

Poor antimatrix interference capability of aptamers is one of the major obstacles preventing their wide applications for real-sample detections. Here, we devise a multiple-function interface, denoted as a nanoscale affinity double layer (NADL), to overcome this bottleneck via in situ simultaneous target enrichment, purification, and detection. The NADL consists of an upper aptamer layer for target purification and sensing and a lower nanoscale solid-phase microextraction (SPME) layer for sample enrichment. The targets flowing through the NADL-functionalized surface are instantly million-fold enriched and purified by the sequential extraction of aptamer and SPME. The formation of the aptamer-target complex is greatly enhanced, enabling ultrasensitive detection of targets with minimized interference from the matrix. Taking the fiber-optic evanescent wave sensor as an example, we demonstrated the feasibility and generality of the NADL. The unprecedented detection of limits of 800, 4.8, 40, and 0.14 fM were, respectively, achieved for three representative small-molecule targets with distinct hydrophobicity (kanamycin A, sulfadimethoxine, and di-(2-ethylhexyl) phthalate) and protein target (human serum albumin), corresponding to 2500 to 3 × 108-fold improvement compared to the sensors without the NADL. Our sensors also showed exceptionally high target specificity (>1000) and tunable dynamic ranges simply by manipulating the SPME layer. With these features comes the ability to directly detect targets in diluted environmental, food, and biological samples at concentrations all well below the tolerance limits.

2.
Analyst ; 146(9): 2910-2918, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724284

RESUMO

PD-1/PD-L1 is an important pathway in immunotherapy and a high PD-L1 expression level in tumor tissues is an essential prerequisite for PD-1/PD-L1 blocking-based therapy. The PD-L1 expression level in tumor tissue sections is currently detected via immunohistochemistry (IHC) using anti-PD-L1 antibodies from various resources, which has the disadvantage of inconsistent results. As synthetic affinity ligands, aptamers have good batch-to-batch consistency and have been demonstrated to have great potential for use in biomedical applications. In this study, we isolated PD-L1 aptamers using a combination method, named Modular-SELEX (systematic evolution of ligands by exponential enrichment), which includes three sequentially performed modules: the affinity module, the specificity module, and the compatibility module. Three rounds of magnetic crosslinking precipitation (MCP)-SELEX, three rounds of Capture-SELEX, and two rounds of Tissue-SELEX were respectively performed in the corresponding three modules to significantly and efficiently improve the native affinity, specificity, and compatibility of the enriched library. The isolated aptamer Clon-3 had nanomolar binding affinity, as determined via both homogeneous and PD-L1 immobilized affinity assays. Clon-3 could be used to recognize various cancer cells with distinct PD-L1 expression levels using flow cytometry. The PD-L1 expression levels in normal human tonsils (the gold standard for anti-PD-L1 antibody) and non-small cell lung cancer tissue sections stained using Cy5.5-labeled Clon-3 were also successfully imaged using a confocal microscope. The fluorescence intensities of the tissue sections were in good agreement with their actual PD-L1 expression levels as confirmed via IHC.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1 , Humanos , Técnica de Seleção de Aptâmeros
3.
Analyst ; 145(12): 4276-4282, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32478774

RESUMO

The ideal way to assess aptamer affinity is when both aptamer and target are in a native state, without the unpredictable interference associated with labelling and surface immobilization. However, most current aptamer affinity assays need aptamer (or target) immobilization on surface and/or labelling. Ideally, such a solution-phase assay should also be high-throughput, in order to accelerate aptamer identification, binding site study, and engineering for various downstream applications. So far, only isothermal titration calorimetry (ITC) enables label-free solution-phase affinity measurements, but with low-throughput and the need of large amount of samples. Here, we report a solution-phase, label-free, colorimetric gold nanoparticle (AuNP)-based affinity assay (Nano-Affi) that addresses this need. Nano-Affi is based on kinetically-favoured, adsorbate charge-tuned aggregation of AuNPs, wherein positively-charged or near-neutral proteins induce instantaneous aggregation of negatively-charged AuNPs at the pH below or near the isoelectric point of the target protein. In contrast, protein-aptamer complexes possess a greater negative charge than free targets, and thus induce little or no aggregation of AuNPs due to electrostatic repulsion. The higher an aptamer's affinity for the protein, the less AuNP aggregation occurs. We demonstrate here that Nano-Affi enables the reliable aptamer screening and dissociation constant determination for diverse protein targets, as well as binding site identification, with readouts based on colour observation or absorbance or dynamic light scattering size measurements. Nano-Affi possesses sub-nanomolar sensitivity and can be performed with nanogram amounts of protein in less than half an hour with minimal training and minimal instrument requirements.

4.
Anal Chem ; 91(11): 7199-7207, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31050407

RESUMO

Colorimetric aptamer-based sensors offer a simple means of on-site or point-of-care analyte detection. However, these sensors are largely incapable of achieving naked-eye detection, because of the poor performance of the target-recognition and signal-reporting elements employed. To address this problem, we report a generalizable strategy for engineering novel multimodule split DNA constructs termed "CBSAzymes" that utilize a cooperative binding split aptamer (CBSA) as a highly target-responsive bioreceptor and a new, highly active split DNAzyme as an efficient signal reporter. CBSAzymes consist of two fragments that remain separate in the absence of target, but effectively assemble in the presence of the target to form a complex that catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid, developing a dark green color within 5 min. Such assay enables rapid, sensitive, and visual detection of small molecules, which has not been achieved with any previously reported split-aptamer-DNAzyme conjugates. In an initial demonstration, we generate a cocaine-binding CBSAzyme that enables naked-eye detection of cocaine at concentrations as low as 10 µM. Notably, CBSAzyme engineering is straightforward and generalizable. We demonstrate this by developing a methylenedioxypyrovalerone (MDPV)-binding CBSAzyme for visual detection of MDPV and 10 other synthetic cathinones at low micromolar concentrations, even in biological samples. Given that CBSAzyme-based assays are simple, label-free, rapid, robust, and instrument-free, we believe that such assays should be readily applicable for on-site visual detection of various important small molecules such as illicit drugs, medical biomarkers, and toxins in various sample matrices.


Assuntos
Aptâmeros de Nucleotídeos/química , Benzodioxóis/análise , Cocaína/análise , DNA Catalítico/química , Pirrolidinas/análise , Bibliotecas de Moléculas Pequenas/análise , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais , Colorimetria , DNA Catalítico/metabolismo , Engenharia de Proteínas , Catinona Sintética
5.
Anal Chem ; 91(22): 14514-14521, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31614078

RESUMO

Structure-switching aptamers (SSAs) offer a promising recognition element for sensor development. However, the generation of SSAs via in vitro aptamer selection technologies or postselection engineering is challenging. Inspired by the two-domain structure of antibodies, we have devised a simple, universal strategy for engineering aptamers into SSAs with signal reporting functionality. These constructs consist of a "constant" domain, comprising a split DNAzyme G-quadruplex (G4) region for signal transduction, and a "variable" domain, comprising an aptamer sequence capable of specific target binding. In the absence of target, the G4-SSA construct folds into a parallel G4 structure with high peroxidase catalytic activity. Target binding disrupts the G4 structure, resulting in low enzymatic activity. We demonstrate that this change in DNAzyme activity enables sensitive and specific colorimetric detection of diverse targets including Hg2+, thrombin, sulfadimethoxine, cocaine, and 17ß-estradiol. G4-SSAs can also achieve label-free fluorescence detection of various targets using a specific G4-binding dye. We demonstrate that diverse aptamers can be readily engineered into G4-SSA constructs independent of target class, binding affinity, aptamer length, or structure. This design strategy could broadly extend the power, accessibility, and utility of numerous SSA-based biosensors.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Benzotiazóis/química , Biocatálise , Cocaína/análise , Cocaína/química , Colorimetria/métodos , DNA Catalítico/genética , Estradiol/análise , Estradiol/química , Corantes Fluorescentes/química , Quadruplex G , Limite de Detecção , Mercúrio/análise , Mercúrio/química , Conformação de Ácido Nucleico , Peroxidase/química , Espectrometria de Fluorescência/métodos , Sulfadimetoxina/análise , Sulfadimetoxina/química , Trombina/análise , Trombina/química
6.
Anal Chem ; 91(21): 13383-13389, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31580650

RESUMO

We report here a modified aptamer selection method, magnetic cross-linking precipitation (MCP)-SELEX, for highly efficient library enrichment and aptamer isolation. MCP-SELEX isolates bound aptamers via highly efficient chemical cross-linking between amino groups of target proteins and activated carboxylic acid groups on magnetic beads (>90% coupling efficiency). Importantly, MCP-SELEX avoids surface interferences in conventional target-fixed methods and substantially minimizes nonspecific binding. The enrichment efficiencies of MCP-SELEX for various proteins (PD-L1, ubiquitin, thrombin, and HSA) were all greatly higher than those of the conventional target-bound magnetic bead based-SELEX (MB-SELEX). Antithrombin aptamer with KD of 33 nM was successfully isolated by four rounds of MCP-SELEX. MCP-SELEX also enabled the efficient aptamer isolation by coupling with MB-SELEX or falling-off-SELEX. We identified structure-switching aptamers (SSAs) that specifically bind to HSA with low nanomolar dissociation constant via three rounds of MCP-SELEX and 1 round of falling-off-SELEX. Our HSA SSAs also have ∼3-fold higher specificity against streptavidin relative to thrombin SSAs discovered through falling-off-SELEX only. The enriched library has ∼78-fold higher signal-to-noise ratio (the number of DNAs eluted by 50 nM HSA divided by the number of DNAs self-dissociated in blank buffer) than that obtained by 4 rounds of direct falling-off-SELEX. We finally demonstrated the application of the selected SSA in fluorescent detection of HSA in urine with diagnostic required sensitivity and dynamic range. We expect that MCP-SELEX may be coupled with other selection methods to substantially accelerate aptamer discovery.


Assuntos
Antitrombinas/química , Aptâmeros de Nucleotídeos , Precipitação Química , Magnetismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnica de Seleção de Aptâmeros/métodos
7.
Langmuir ; 35(36): 11791-11798, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31430429

RESUMO

Thiolated functional nucleic acid-gold nanoparticle conjugates (FNA-AuNPs) are the core recognition elements in biosensors. The long-term functional stability (LTFS) is critical for their practical applications and, however, has been overlooked. Here we report on the huge effects of multiple experimental factors on LTFS, including spacer- and buffer-composition, secondary structures of FNAs, and surface blocking. We quantitatively determined these effects by measuring the relative hybridization capacity (RHC, the relative amount of complementary DNA hybridized with the same amount of conjugates) for linear DNA-AuNP or the relative signal change generated by their function (RSC-F) for molecular beacon (MB) and G-quadruplex (G4)-AuNPs. There is a positive relationship between the spacer affinity [oligoadenine (A10) > oligothymine (T10) > oligoethlyene glycol (EG18)] of the linear DNA probes and the LTFS. The LTFS of linear DNA-AuNP in phosphate buffer (PB) was much better than that in Good's buffers such as HEPES, Tris, and MES. The secondary structure of FNAs also strongly impacted the LTFS, showing the substantially decreased LTFS from G4- to linear DNA- to MB-AuNPs, where EG18 spacer was used for all these conjugates. The surface blocking of FNA-AuNPs greatly improved the LTFS. We experimentally determined that the LTFS of FNA-AuNPs was directly related to the dissociation of DNAs caused by the in situ generated H2O2 due to the oxidase activity of AuNP and thereby oxidation of Au-thiol bonds. The oxidase activity of AuNP was favored at high temperature, low pH, high AuNP concentration, high Good's buffer concentration, and high salt concentration, corresponding well with the positive effects of high affinity spacer, PB, and surface blocking on the LTFS of FNA-AuNPs. Our study has implications on both fundamental surface science and practical applications.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Quadruplex G , Tamanho da Partícula , Propriedades de Superfície
8.
Anal Biochem ; 556: 7-15, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913134

RESUMO

Nucleic acid-based aptamers are promising alternative to antibodies, however, their selection process (SELEX) is challenging. A number of simulations and few experiments have been reported offering insights into experimental factors (EFs) that govern the effectiveness of the selection process. Though useful, these previous studied were either lack of experimental confirmation, or considered limited EFs. A more efficient experimental method is highly desired. In this study, we developed a fast method that is capable to quantitatively probe the influence of multiple EFs. Based on the fact that the aptamer enrichment efficiency is highly affected by background binding, the binding ratio between the numbers of specific aptamer binders and nonspecific (unselected library) binders per bead was used to quantitatively evaluate EF effects. Taking thrombin and streptavidin as models, three previously studied EFs (surface coverage, buffer composition, and DNA concentration) and four never-studied ones (surface chemistry, heat treatment, elution methodology and pool purity) were investigated. The EFs greatly affected binding ratio (ranging from 0.03 ±â€¯0.03 to 14.60 ±â€¯2.30). The results were in good agreement with the literature, suggesting the good feasibility of our method. Our study provides guidance for the choice of EFs not only for aptamer selection, but also for binding evaluation of aptamers.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros , Estreptavidina/química , Trombina/química
9.
Anal Chem ; 89(10): 5270-5277, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28414217

RESUMO

Phthalic acid esters (PAEs) are ubiquitous in the environment, and some of them are recognized as endocrine disruptors that cause concerns on ecosystem functioning and public health. Due to the diversity of PAEs in the environment, there is a vital need to detect the total concentration of PAEs in a timely and low-cost way. To fulfill this requirement, it is highly desired to obtain group-specific PAE binders that are specific to the basic PAE skeleton. In this study, for the first time we have identified the group-specific PAE-binding aptamers via rationally designed target immobilization. The two target immobilization strategies were adopted to display either the phthalic ester group or the alkyl chain, respectively, at the surface of the immobilization matrix. The former enabled the rapid enrichment of aptamers after four rounds of selection. The top 100 sequences are cytosine-rich (44.7%) and differentiate from each other by only 1-4 nucleotides at limited locations. The top two aptamers all display the nanomolar dissociation constants to both the immobilized target and the free PAEs [dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP)]. We further demonstrate the applications of the aptamers in the development of high-throughput PAE assays and DEHP electrochemical biosensors with exceptional sensitivity [limit of detection (LOD), 10 pM] and selectivity (>105-fold). PAE aptamers targeting one of the most sought for targets thus offer the promise of convenient, low-cost detection of total PAEs. Our study also provides insights on the aptamer selection and sensor development of highly hydrophobic small molecules.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Ácidos Ftálicos/análise , Dibutilftalato/análise , Dietilexilftalato/análise , Técnicas Eletroquímicas , Disruptores Endócrinos/análise , Ésteres/química , Imobilização , Ácidos Nucleicos Imobilizados/química , Cinética , Microscopia de Fluorescência
10.
Anal Bioanal Chem ; 408(28): 8025-8036, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27590320

RESUMO

A wide range of pathologies have been targeted with bimodular aptamers that contain both G-quadruplex (G4) and duplex motifs, while the structures and functions are poorly understood. G4-selective fluorescent dyes have served as facile tools to probe G4s, but not for bimodular aptamers, yet. Here, taking the 29-mer thrombin binding aptamer (TBA29) as an example, we demonstrated that 3,6-dimethyl-2-(4-dimethylaminophenyl)-benzothiazolium (ThT) was the most effective dye compared to NMM and PPIX in recognizing TBA29. Binding studies indicate that ThT recognized TBA29 via distinct buffer-dependent mechanisms. Specifically, ThT induced the formation of a bimolecular parallel G4 in cation-deficient buffer, showing 341-fold fluorescent enhancement. The competitive binding of thrombin disrupted the complex, leading to the monotonic fluorescence decrease. A similar mechanism was previously reported for the interaction between ThT and the 15-mer thrombin binding aptamer (TBA15). However, TBA29 bound with ThT in a more favorable state than TBA15, showing hyperchromic effects and two times stronger fluorescence enhancement. Differently, ThT bound with antiparallel TBA29/TBA15 in an intercalating/groove binding mode in 100 mM KCl, generating 181/28-fold fluorescence enhancement, respectively. These results revealed that ThT recognized both parallel and antiparallel G4s of TBA29 more efficiently than it recognized TBA15. The duplex structure of TBA29 may play an important role in its interaction with ThT. Our study broadens the application of ThT in screening G4 to bimodular aptamers and provides some insights into the structures of TBA29, along with the interaction between ThT and TBA29. Our study also is useful for the development of structure-switching-based biosensors using bimodular aptamers. Graphical abstract The buffer-dependent binding mechanisms of ThT with TBA29, and the competitive (top)/noncompetitive (bottom) binding of thrombin with TBA29-ThT complex.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Quadruplex G , Tiazóis/química , Benzotiazóis , Calorimetria , Ligação Proteica , Espectrometria de Fluorescência
11.
Anal Chem ; 87(15): 7712-9, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26171721

RESUMO

It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Bibliotecas de Moléculas Pequenas/análise , Aptâmeros de Nucleotídeos/química , Cocaína/análise , Limite de Detecção
12.
Anal Chem ; 86(20): 10186-92, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25222203

RESUMO

The kinetic adsorption profile at the DNA-gold nanoparticle (AuNP) interface is probed by following the binding and organization of thiolated linear DNA and aptamers of varying chain lengths (15, 30, 44, and 51 mer) to the surface of AuNPs (13.0 ± 1.0 nm diameter). A systematic investigation utilizing dynamic light scattering has been performed to directly measure the changes in particle size during the course of a typical aging-salting thiolated DNA/AuNP preparation procedure. We discuss the effect of DNA chain length, composition, salt concentration, and secondary structure on the kinetics and conformation at the DNA-AuNP interface. The adsorption kinetics are chain-length dependent, composition independent, and not diffusion rate limited for the conditions we report here. The kinetic data support a mechanism of stepwise adsorption of thiols to the surface of AuNPs and reorganization of the thiols at the interface. Very interestingly, the kinetic increases of the particle sizes are modeled accurately by the pseudo-second-order rate model, suggesting that DNA could possess the statistically well-defined conformational evolution. Together with other experimental evidence, we propose a dynamic inner-layer and outer-tail (DILOT) model to describe the evolution of the DNA conformation after the initial adsorption of a single oligonucleotide layer. According to this model, the length of the tails that extend from the surface of AuNPs, capable for hybridization or molecular recognition, can be conveniently calculated. Considering the wide applications of DNA/AuNPs, the results should have important implications in sensing and DNA-directed nanoparticle assembly.


Assuntos
Técnicas de Química Analítica/métodos , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Cinética , Luz , Conformação Molecular
13.
Anal Chem ; 86(22): 11100-6, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25342426

RESUMO

We report a rapid and specific aptamer-based method for one-step cocaine detection with minimal reagent requirements. The feasibility of aptamer-based detection has been demonstrated with sensors that operate via target-induced conformational change mechanisms, but these have generally exhibited limited target sensitivity. We have discovered that the cocaine-binding aptamer MNS-4.1 can also bind the fluorescent molecule 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and thereby quench its fluorescence. We subsequently introduced sequence changes into MNS-4.1 to engineer a new cocaine-binding aptamer (38-GC) that exhibits higher affinity to both ligands, with reduced background signal and increased signal gain. Using this aptamer, we have developed a new sensor platform that relies on the cocaine-mediated displacement of ATMND from 38-GC as a result of competitive binding. We demonstrate that our sensor can detect cocaine within seconds at concentrations as low as 200 nM, which is 50-fold lower than existing assays based on target-induced conformational change. More importantly, our assay achieves successful cocaine detection in body fluids, with a limit of detection of 10.4, 18.4, and 36 µM in undiluted saliva, urine, and serum samples, respectively.


Assuntos
Aptâmeros de Nucleotídeos/química , Líquidos Corporais/química , Cocaína/análise , Corantes Fluorescentes/química , Naftiridinas/química , Fluorescência , Humanos , Fatores de Tempo
14.
Anal Chem ; 86(7): 3461-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24611947

RESUMO

Single nucleotide polymorphism (SNP) detection is important for early diagnosis, clinical prognostics, and disease prevention, and a rapid and sensitive low-cost SNP detection assay would be valuable for resource-limited clinical settings. We present a simple platform that enables sensitive, naked-eye detection of SNPs with minimal reagent and equipment requirements at room temperature within 15 min. SNP detection is performed in a single tube with one set of DNA probe-modified gold nanoparticles (AuNPs), a single exonuclease (Exo III), and the target in question. Exo III's apurinic endonucleolytic activity differentially processes hybrid duplexes between the AuNP-bound probe and DNA targets that are perfectly matched or contain a single-base mismatch. For perfectly matched targets, Exo III's exonuclease activity facilitates a process of target recycling that rapidly shears DNA probes from the particles, generating an AuNP aggregation-induced color change, whereas no such change occurs for mismatched targets. This color change is easily observed with as little as 2 nM of target, 100-fold lower than the target concentration required for reliable naked eye observation with unmodified AuNPs in well-optimized reaction conditions. We further demonstrate that this system can effectively discriminate a range of different mismatches.


Assuntos
Pareamento Incorreto de Bases , Exonucleases/química , Ouro/química , Nanopartículas Metálicas , Polimorfismo de Nucleotídeo Único , Espectrofotometria Ultravioleta
15.
Anal Chim Acta ; 1302: 342509, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580413

RESUMO

Functional nucleic acids (FNAs) have attracted a lot of attention for the rapid detection of metal ions. Cr3+ is one of the major heavy metal ions in natural waters. Due to the slow ligand exchange rate of Cr3+, the FNA-based Cr3+ sensors require long assay times, limiting the on-site applications. In this study, we report that the good's buffers containing amino and polyhydroxy groups greatly increase the ligand exchange rate of Cr3+. Using EDTA as a model coordinate ligand, the Tris buffer (100 mM, pH 7.0) showed the best acceleration effect among the eight buffers. It improved the rate constant ∼20-fold, shorten the half-time 19-fold, and lowered the activation energy ∼70% at 40 °C. The Tris buffer was then applied for sensor based on the Cr3+-binding induced fluorescence quenching of fluorescein (FAM)-labeled and single-stranded DNA (ssDNA), which shortened the assay time from 1 h to 1 min. The Tris buffer also ∼100% enhanced the fluorescence intensity of FAM, achieving the 11.4-fold lower limit of detection (LOD = 6.97 nM, S/N = 3). By the combination use of the Tris buffer and ascorbic acid, the strong interference from Cu2+, Pb2+, and Fe3+ suffered in many previous reported Cr3+ sensors was avoided. The practical application of the sensor for the detection of Cr3+ spiked in the real water samples were demonstrated with high recovery percentages. The Tris buffer could be applied for other metal ions with slow ligand exchange rate (such as V2+, Co3+ and Fe2+) to solve diverse issues such as long assay time and low synthesis yield of metal complexes, without the need of heating treatment.


Assuntos
Cromo , Trometamina , Cromo/química , Fluorescência , Ligantes , Metais , Íons , DNA de Cadeia Simples
16.
Biosensors (Basel) ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785705

RESUMO

The development of rapid detection tools for viruses is vital for the prevention of pandemics and biothreats. Aptamers that target inactivated viruses are attractive for sensors due to their improved biosafety. Here, we evaluated a DNA aptamer (named as 6.9) that specifically binds to the inactivated SARS-CoV-2 virus with a low dissociation constant (KD = 9.6 nM) for the first time. Based on aptamer 6.9, we developed a fiber-optic evanescent wave (FOEW) biosensor. Inactivated SARS-CoV-2 and the Cy5.5-tagged short complementary strand competitively bound with the aptamer immobilized on the surface of the sensor. The detection of the inactivated SARS-CoV-2 virus was realized within six minutes with a limit of detection (LOD, S/N = 3) of 740 fg/mL. We also developed an electrochemical impedance aptasensor which exhibited an LOD of 5.1 fg/mL and high specificity. We further demonstrated that the LODs of the FOEW and electrochemical impedance aptasensors were, respectively, more than 1000 and 100,000 times lower than those of commercial colloidal gold test strips. We foresee that the facile aptamer isolation process and sensor design can be easily extended for the detection of other inactivated viruses.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Espectroscopia Dielétrica , Limite de Detecção , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Tecnologia de Fibra Óptica
17.
Anal Chem ; 85(15): 7574-80, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23841512

RESUMO

Sensors with wide dynamic ranges (DRs) are typically constructed by utilizing a set of ligands with varied affinities for the same target. We report here a novel buffer self-assembled monolayer (BSAM) strategy, to fabricate sensors with extraordinarily broad DRs using a single recognition ligand. We demonstrated the concept of BSAM by constructing the electrochemical mercuric sensors with different surface probe densities (SPD) on a gold electrode. These sensors are based on the coordination of Hg(2+) with a pair of thymine (T) formed between the two proximate poly(T) oligonucleotides on the electrode surface and Hg(2+) binding induced DNA strand displacement of ferrocene tagged poly(A). There are three types of T-Hg(2+)-T coordination: those formed between (a) two poly(T) strands where none are hybridized with poly(A) strands, thus contributing zero effect on releasing the signaling probe, (b) poly(A)/poly(T) hybridized and nonhybridized poly(T) strands, resulting in the release of a signaling probe from the surface; and (c) two poly(A)/poly(T) hybridized strands, causing the release of two signaling probes from the surface. The DRs from 10 pM to 0.1 mM at varied SPDs were observed, attributing to the tunable Hg(2+) storage capability of the poly(T) SAM formed on the surface due to the coordination mechanism of (a) and (b). The DR was able to be further extended to 1 mM by using the longer poly(T) strands. The ready-to-use sensor exhibited great selectivity against the common interferential metal ions. As demonstrated, the BSAM strategy is a facile way to fabricate sensors with tunable and wide DRs.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , Mercúrio/análise , Mercúrio/química , Soluções Tampão , Condutividade Elétrica , Eletroquímica , Estudos de Viabilidade , Limite de Detecção , Hibridização de Ácido Nucleico , Propriedades de Superfície
18.
Proc Natl Acad Sci U S A ; 107(32): 14053-8, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660786

RESUMO

We describe an innovative selection approach to generate self-reporting aptamers (SRAs) capable of converting target-binding events into fluorescence readout without requiring additional modification, optimization, or the use of DNA helper strands. These aptamers contain a DNAzyme moiety that is initially maintained in an inactive conformation. Upon binding to their target, the aptamers undergo a structural switch that activates the DNAzyme, such that the binding event can be reported through significantly enhanced fluorescence produced by a specific stacking interaction between the active-conformation DNAzyme and a small molecule dye, N-methylmesoporphyrin IX. We demonstrate a purely in vitro selection-based approach for obtaining SRAs that function in both buffer and complex mixtures such as blood serum; after 15 rounds of selection with a structured DNA library, we were able to isolate SRAs that possess low nanomolar affinity and strong specificity for thrombin. Given ongoing progress in the engineering and characterization of functional DNA/RNA molecules, strategies such as ours have the potential to enable rapid, efficient, and economical isolation of nucleic acid molecules with diverse functionalities.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA Catalítico/metabolismo , Aptâmeros de Nucleotídeos/isolamento & purificação , Fluorescência , Corantes Fluorescentes , Biblioteca Gênica , Humanos , Mesoporfirinas , Conformação de Ácido Nucleico , Trombina/genética
19.
Biosensors (Basel) ; 13(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37185500

RESUMO

Biosensors capable of onsite and continuous detection of environmental and food pollutants and biomarkers are highly desired, but only a few sensing platforms meet the "2-SAR" requirements (sensitivity, specificity, affordability, automation, rapidity, and reusability). A fiber optic evanescent wave (FOEW) sensor is an attractive type of portable device that has the advantages of high sensitivity, low cost, good reusability, and long-term stability. By utilizing functional nucleic acids (FNAs) such as aptamers, DNAzymes, and rational designed nucleic acid probes as specific recognition ligands, the FOEW sensor has been demonstrated to be a general sensing platform for the onsite and continuous detection of various targets ranging from small molecules and heavy metal ions to proteins, nucleic acids, and pathogens. In this review, we cover the progress of the fluorescent FNA-based FOEW biosensor since its first report in 1995. We focus on the chemical modification of the optical fiber and the sensing mechanisms for the five above-mentioned types of targets. The challenges and prospects on the isolation of high-quality aptamers, reagent-free detection, long-term stability under application conditions, and high throughput are also included in this review to highlight the future trends for the development of FOEW biosensors capable of onsite and continuous detection.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Tecnologia de Fibra Óptica , Fibras Ópticas , DNA Catalítico/química , Oligonucleotídeos
20.
Biosens Bioelectron ; 237: 115528, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480786

RESUMO

Small molecule-binding aptamers often suffer from high cross reactivity to structure analogues in biological samples, limiting their value for clinical diagnosis. Herein, we present a method to overcome this issue, by performing binding-inhibited organic reaction-based regioselective selection of aptamers against homocysteine (Hcy), which is a marker for diagnosing many disorders including stroke and Alzheimer's. This approach has led to isolation of a DNA aptamer that binds to the alkane thiol chain of Hcy with exceptional specificity against cysteine. It also binds with oxidized Hcy at weaker affinity. Using this new aptamer, we produced a reusable fluorescent optical fiber aptasensor for direct and validated detection of both free and total Hcy in nondeproteinized patient plasma in the diagnostic concentration range. The binding site-specific aptamer selection and optical-fiber-sensing strategy can expand the practical utility of aptamers in clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnica de Seleção de Aptâmeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA