Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Genomics ; 11: 56, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20092627

RESUMO

BACKGROUND: This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality. RESULTS: Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs. CONCLUSION: The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Leveduras/genética , Algoritmos , Bases de Dados Genéticas , Evolução Molecular , Genoma Fúngico , Repetições Minissatélites , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Análise de Sequência de DNA
2.
Trends Genet ; 22(1): 10-5, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16269202

RESUMO

The DUP gene family of Saccharomyces cerevisiae comprises 23 members that can be divided into two subfamilies--DUP240 and DUP380. The location of the DUP loci suggests that at least three mechanisms were responsible for their genomic dispersion: nonreciprocal translocation at chromosomal ends, tandem duplication and Ty-associated duplication. The data we present here suggest that these nonessential genes encode proteins that facilitate membrane trafficking processes. Dup240 proteins have three conserved domains (C1, C2 and C3) and two predicted transmembrane segments (H1 and H2). A direct repetition of the C1-H1-H2-C2 module is observed in Dup380p sequences. In this article, we propose an evolutionary model to account for the emergence of the two gene subfamilies.


Assuntos
Genes Fúngicos , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Evolução Molecular , Duplicação Gênica , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Translocação Genética
3.
G3 (Bethesda) ; 2(2): 299-311, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22384408

RESUMO

Polyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages. In this article, we show that an osmotolerant yeast species, Pichia sorbitophila, recently isolated in a concentrated sorbitol solution in industry, illustrates this last situation. Its genome is a mosaic of homologous and homeologous chromosomes, or parts thereof, that corresponds to a recently formed hybrid in the process of evolution. The respective parental contributions to this genome were characterized using existing variations in GC content. The genomic changes that occurred during the short period since hybrid formation were identified (e.g., loss of heterozygosity, unilateral loss of rDNA, reciprocal exchange) and distinguished from those undergone by the two parental genomes after separation from their common ancestor (i.e., NUMT (NUclear sequences of MiTochondrial origin) insertions, gene acquisitions, gene location movements, reciprocal translocation). We found that the physiological characteristics of this new yeast species are determined by specific but unequal contributions of its two parents, one of which could be identified as very closely related to an extant Pichia farinosa strain.

4.
C R Biol ; 334(8-9): 639-46, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21819945

RESUMO

This short article presents an overview of tandem gene arrays (TGAs) in hemiascomycete yeasts. In silico and in vivo analyses are combined to address structural, functional and evolutionary aspects of these particular chromosomal structures. Genomic instability of TGAs is discussed. We conclude that TGAs are generally dynamic regions of the genome in that they are the seats of chromosomal rearrangement events. In addition, they are often breeding grounds of new genes for a rapid adaptation of cells to demands of the environment.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Leveduras/genética , Cromossomos Fúngicos/genética , Bases de Dados Genéticas , Evolução Molecular , Dosagem de Genes , Polimorfismo Genético/genética , Saccharomyces cerevisiae/genética , Repetições de Trinucleotídeos
5.
Mol Biol Evol ; 22(9): 1764-71, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15917500

RESUMO

Duplication, resulting in gene redundancy, is well known to be a driving force of evolutionary change. Gene families are therefore useful targets for approaching genome evolution. To address the gene death process, we examined the fate of the 10-member-large S288C DUP240 family in 15 Saccharomyces cerevisiae strains. Using an original three-step method of analysis reported here, both slightly and highly degenerate DUP240 copies, called pseudo-open reading frames (ORFs) and relics, respectively, were detected in strain S288C. It was concluded that two previously annotated ORFs correspond, in fact, to pseudo-ORFs and three additional relics were identified in intergenic areas. Comparative intraspecies analysis of these degenerate DUP240 loci revealed that the two pseudo-ORFs are present in a nondegenerate state in some other strains. This suggests that within a given gene family different loci are the target of the gene erasure process, which is therefore strain dependent. Besides, the variable positions observed indicate that the relic sequence may diverge faster than the flanking regions. All in all, this study shows that short conserved protein motifs provide a useful tool for detecting and accurately mapping degenerate gene remnants. The present results also highlight the strong contribution of comparative genomics for gene relic detection because the possibility of finding short conserved protein motifs in intergenic regions (IRs) largely depends on the choice of the most closely related paralog or ortholog. By mapping new genetic components in previously annotated IRs, our study constitutes a further refinement step in the crucial stage of genome annotation and provides a strategy for retracing ancient chromosomal reshaping events and, hence, for deciphering genome history.


Assuntos
DNA Intergênico/genética , Duplicação Gênica , Família Multigênica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , DNA Intergênico/história , Evolução Molecular , Genoma Fúngico , História Antiga , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA