Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(4): 2020-2031, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31937660

RESUMO

The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.


Assuntos
Neoplasias da Mama/metabolismo , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA de Neoplasias/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genoma Humano , Humanos , Ligação Proteica , Domínios Proteicos , Células Tumorais Cultivadas , Coesinas
2.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983050

RESUMO

Cancer testis antigens are ideal for tumor immunotherapy due to their testis-restricted expression. We previously showed that an immunotherapeutic vaccine targeting the germ cell-specific transcription factor BORIS (CTCFL) was highly effective in treating aggressive breast cancer in the 4T1 mouse model. Here, we further tested the therapeutic efficacy of BORIS in a rat 13762 breast cancer model. We generated a recombinant VEE-VRP (Venezuelan Equine Encephalitis-derived replicon particle) vector-expressing modified rat BORIS lacking a DNA-binding domain (VRP-mBORIS). Rats were inoculated with the 13762 cells, immunized with VRP-mBORIS 48 h later, and then, subsequently, boosted at 10-day intervals. The Kaplan-Meier method was used for survival analysis. Cured rats were re-challenged with the same 13762 cells. We demonstrated that BORIS was expressed in a small population of the 13762 cells, called cancer stem cells. Treatment of rats with VRP-BORIS suppressed tumor growth leading to its complete disappearance in up to 50% of the rats and significantly improved their survival. This improvement was associated with the induction of BORIS-specific cellular immune responses measured by T-helper cell proliferation and INFγ secretion. The re-challenging of cured rats with the same 13762 cells indicated that the immune response prevented tumor growth. Thus, a therapeutic vaccine against rat BORIS showed high efficacy in treating the rat 13762 carcinoma. These data suggest that targeting BORIS can lead to the elimination of mammary tumors and cure animals even though BORIS expression is detected only in cancer stem cells.


Assuntos
Neoplasias Mamárias Animais , Vacinas , Animais , Masculino , Camundongos , Ratos , Proteínas de Ligação a DNA/metabolismo , Imunoterapia/métodos , Fatores de Transcrição
3.
Cancer Immunol Immunother ; 67(12): 1955-1965, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30390146

RESUMO

Cancer vaccines have great potential in the fight against metastatic malignancies. Current anti-tumor immunotherapy is hindered by existing tolerance to tumor-associated antigens (TAA) and tumor escape using various mechanisms, highlighting the need for improved targets for immunotherapy. The cancer-testis antigen CTCFL/BORIS was discovered 16 years ago and possesses all features necessary for an ideal TAA. Recently CTCFL/BORIS has received additional attention as a target expressed in cancer stem cells (CSC). These cells drive tumor growth recurrence, metastasis, and treatment resistance. CTCFL/BORIS silencing leads to senescence and death of CSC. Therefore, an immunotherapeutic strategy that targets CTCFL/BORIS may lead to the selective destruction of CSC and potential eradication of metastatic disease. The high immunotherapeutic potential of CTCFL/BORIS antigen was shown in a stringent 4T1 mouse model of breast cancer. Using these highly metastatic, poorly immunogenic carcinoma cells inoculated into T-helper2 prone mice, we showed that DC fed with recombinant CTCFL/BORIS as an immunogen inhibited tumor growth and reduced the number of metastases in distant organs. About 20% of CTCFL/BORIS immunized animals were tumor free. 50% of animals remained metastasis free. Those having metastasis showed at least tenfold fewer metastases compared to controls. In a rat model of breast cancer, we showed that alphavirus-based CTCFL/BORIS immunotherapy was capable of cancer elimination as we were able to cure 50% of animals. Based on the above data, we believe that translation of CTCFL/BORIS-targeting immunotherapeutic strategies to the clinic will provide new avenues for improving survival of breast cancer patients with advanced metastatic disease.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Proteínas de Ligação a DNA/antagonistas & inibidores , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/terapia , Animais , Antineoplásicos Imunológicos/farmacologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Isoformas de RNA , Espermatogênese
4.
Int J Mol Sci ; 19(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513694

RESUMO

CCCTC-binding factor (CTCF) is a conserved transcription factor that performs diverse roles in transcriptional regulation and chromatin architecture. Cancer genome sequencing reveals diverse acquired mutations in CTCF, which we have shown functions as a tumour suppressor gene. While CTCF is essential for embryonic development, little is known of its absolute requirement in somatic cells and the consequences of CTCF haploinsufficiency. We examined the consequences of CTCF depletion in immortalised human and mouse cells using shRNA knockdown and CRISPR/Cas9 genome editing as well as examined the growth and development of heterozygous Ctcf (Ctcf+/-) mice. We also analysed the impact of CTCF haploinsufficiency by examining gene expression changes in CTCF-altered endometrial carcinoma. Knockdown and CRISPR/Cas9-mediated editing of CTCF reduced the cellular growth and colony-forming ability of K562 cells. CTCF knockdown also induced cell cycle arrest and a pro-survival response to apoptotic insult. However, in p53 shRNA-immortalised Ctcf+/- MEFs we observed the opposite: increased cellular proliferation, colony formation, cell cycle progression, and decreased survival after apoptotic insult compared to wild-type MEFs. CRISPR/Cas9-mediated targeting in Ctcf+/- MEFs revealed a predominance of in-frame microdeletions in Ctcf in surviving clones, however protein expression could not be ablated. Examination of CTCF mutations in endometrial cancers showed locus-specific alterations in gene expression due to CTCF haploinsufficiency, in concert with downregulation of tumour suppressor genes and upregulation of estrogen-responsive genes. Depletion of CTCF expression imparts a dramatic negative effect on normal cell function. However, CTCF haploinsufficiency can have growth-promoting effects consistent with known cancer hallmarks in the presence of additional genetic hits. Our results confirm the absolute requirement for CTCF expression in somatic cells and provide definitive evidence of CTCF's role as a haploinsufficient tumour suppressor gene. CTCF genetic alterations in endometrial cancer indicate that gene dysregulation is a likely consequence of CTCF loss, contributing to, but not solely driving cancer growth.


Assuntos
Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sobrevivência Celular/fisiologia , Neoplasias do Endométrio/genética , Edição de Genes , Animais , Sistemas CRISPR-Cas , Proliferação de Células/genética , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Feminino , Haploinsuficiência/genética , Haploinsuficiência/fisiologia , Humanos , Células K562 , Camundongos , RNA Interferente Pequeno/genética
5.
BMC Cancer ; 14: 796, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25363021

RESUMO

BACKGROUND: As cancer-testis MAGE-A antigens are targets for tumor immunotherapy, it is important to study the regulation of their expression in cancers. This regulation appears to be rather complex and at the moment controversial. Although it is generally accepted that MAGE-A expression is controlled by epigenetics, the exact mechanisms of that control remain poorly understood. METHODS: We analyzed the interplay of another cancer-testis gene, BORIS, and the transcription factors Ets-1 and Sp1 in the regulation of MAGE-A1 gene expression performing luciferase assays, quantitative real-time PCR, sodium bisulfite sequencing, chromatin immunoprecipitation assays and pull down experiments. RESULTS: We detected that ectopically expressed BORIS could activate and demethylate both endogenous and methylated reporter MAGE-A1 promoter in MCF-7 and micrometastatic BCM1 cancer cell lines. Overexpression of Ets-1 could not further upregulate the promoter activity mediated by BORIS. Surprisingly, in co-transfection experiments we observed that Sp1 partly repressed the BORIS-mediated stimulation, while addition of Ets-1 expression plasmid abrogated the Sp1 mediated repression of MAGE-A1 promoter. Both BORIS and Sp1 interacted with the TATA binding protein (hTBP) suggesting the possibility of a competitive mechanism of action between BORIS and Sp1. CONCLUSIONS: Our findings show that BORIS and Sp1 have opposite effects on the regulation of MAGE-A1 gene expression. This differential regulation may be explained by direct protein-protein interaction of both factors or by interaction of MAGE-A1 promoter with BORIS alternatively spliced isoforms with different sequence specificity. We also show here that ectopic expression of BORIS can activate transcription from its own locus, inducing all its splice variants.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/genética , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Processamento Alternativo , Linhagem Celular Tumoral , Metilação de DNA , Técnicas de Silenciamento de Genes , Loci Gênicos , Histonas/metabolismo , Humanos , Células MCF-7 , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ativação Transcricional
6.
Genome Biol ; 25(1): 40, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297316

RESUMO

BACKGROUND: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Masculino , Humanos , Proteínas de Ligação a DNA/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Cromatina , Sítios de Ligação
7.
Nucleic Acids Res ; 39(3): 862-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20876690

RESUMO

Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Telomerase/genética , Neoplasias Testiculares/genética , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular , Metilação de DNA , Éxons , Feminino , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Masculino , Neoplasias Ovarianas/metabolismo , Neoplasias Testiculares/metabolismo
8.
Front Mol Neurosci ; 16: 1185796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324587

RESUMO

Introduction: CTCF-related disorder (CRD) is a neurodevelopmental disorder (NDD) caused by monoallelic pathogenic variants in CTCF. The first CTCF variants in CRD cases were documented in 2013. To date, 76 CTCF variants have been further described in the literature. In recent years, due to the increased application of next-generation sequencing (NGS), growing numbers of CTCF variants are being identified, and multiple genotype-phenotype databases cataloging such variants are emerging. Methods: In this study, we aimed to expand the genotypic spectrum of CRD, by cataloging NDD phenotypes associated with reported CTCF variants. Here, we systematically reviewed all known CTCF variants reported in case studies and large-scale exome sequencing cohorts. We also conducted a meta-analysis using public variant data from genotype-phenotype databases to identify additional CTCF variants, which we then curated and annotated. Results: From this combined approach, we report an additional 86 CTCF variants associated with NDD phenotypes that have not yet been described in the literature. Furthermore, we describe and explain inconsistencies in the quality of reported variants, which impairs the reuse of data for research of NDDs and other pathologies. Discussion: From this integrated analysis, we provide a comprehensive and annotated catalog of all currently known CTCF mutations associated with NDD phenotypes, to aid diagnostic applications, as well as translational and basic research.

9.
J Biol Chem ; 286(31): 27378-88, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21659515

RESUMO

Cancer-testis antigens (CTAs) are normally expressed in testis but are aberrantly expressed in a variety of cancers with varying frequency. More than 100 proteins have been identified as CTA including testes-specific protease 50 (TSP50) and the testis-specific paralogue of CCCTC-binding factor, BORIS (brother of the regulator of imprinted sites). Because many CTAs are considered as excellent targets for tumor immunotherapy, understanding the regulatory mechanisms governing their expression is important. In this study we demonstrate that BORIS is directly responsible for the transcriptional activation of TSP50. We found two BORIS binding sites in the TSP50 promoter that are highly conserved between mouse and human. Mutations of the binding sites resulted in loss of BORIS binding and the ability of BORIS to activate the promoter. However, although expression of BORIS was essential, it was not sufficient for high expression of TSP50 in cancer cells. Further studies showed that binding of BORIS to the target sites was methylation-independent but was diminished by nucleosomal occupancy consistent with the findings that high expression of TSP50 was associated with increased DNase I sensitivity and high BORIS occupancy of the promoter. These findings indicate that BORIS-induced expression of TSP50 is governed by accessibility and binding of BORIS to the promoter. To our knowledge this is the first report of regulated expression of one CTA by another to be validated in a physiological context.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regiões Promotoras Genéticas , Serina Endopeptidases/genética , Animais , Sequência de Bases , Sítios de Ligação , Primers do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Reação em Cadeia da Polimerase , Ligação Proteica , Homologia de Sequência do Ácido Nucleico , Serina Endopeptidases/metabolismo
10.
J Pathol ; 220(1): 87-96, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19806612

RESUMO

Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. Its activity is not detectable in most somatic cells but it is reactivated during tumorigenesis. In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short promoter region is permissive for low-level hTERT transcription. Activated and malignant lymphocytes express high telomerase activity, through a mechanism that seems methylation-independent. The aim of this study was to determine which mechanism is involved in the enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T cell lymphomas and non-neoplastic lymph nodes, the hTERT promoter is unmethylated. Binding sites for the B cell-specific transcription factor PAX5 were identified downstream of the ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF binding. In a B cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. These data show that activation of hTERT in telomerase-positive B cells is due to a methylation-independent mechanism in which PAX5 plays an important role.


Assuntos
Linfócitos B/enzimologia , Fator de Transcrição PAX5/fisiologia , Telomerase/genética , Ativação Transcricional/genética , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Fator de Ligação a CCCTC , Ilhas de CpG/genética , Metilação de DNA , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma/genética , Linfoma/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Telomerase/metabolismo , Células Tumorais Cultivadas
11.
Nat Commun ; 12(1): 3846, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158481

RESUMO

CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Espermatogênese/genética , Testículo/metabolismo , Animais , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Infertilidade Masculina/genética , Masculino , Meiose/genética , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA-Seq/métodos , Recombinação Genética , Espermatozoides/metabolismo
12.
Dev Biol ; 328(2): 518-28, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19210964

RESUMO

Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Genoma de Inseto , Proteínas Repressoras/genética , Animais , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/fisiologia , Drosophila/embriologia , Drosophila/fisiologia , Proteínas de Drosophila/fisiologia , Estudo de Associação Genômica Ampla , Regiões Promotoras Genéticas , Proteínas Repressoras/fisiologia
13.
Mol Cell Biol ; 27(5): 1631-48, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17210645

RESUMO

CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. "Serial" chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the beta-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genoma Humano , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Neoplasias da Mama/patologia , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/química , Genes Reporter , Células HeLa , Humanos , Imuno-Histoquímica , Células K562 , Camundongos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas Repressoras/química , Transfecção
14.
Nucleic Acids Res ; 35(21): 7372-88, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17962299

RESUMO

BORIS, like other members of the 'cancer/testis antigen' family, is normally expressed in testicular germ cells and repressed in somatic cells, but is aberrantly activated in cancers. To understand regulatory mechanisms governing human BORIS expression, we characterized its 5'-flanking region. Using 5' RACE, we identified three promoters, designated A, B and C, corresponding to transcription start sites at -1447, -899 and -658 bp upstream of the first ATG. Alternative promoter usage generated at least five alternatively spliced BORIS mRNAs with different half-lives determined by varying 5'-UTRs. In normal testis, BORIS is transcribed from all three promoters, but 84% of the 30 cancer cell lines tested used only promoter(s) A and/or C while the others utilized primarily promoters B and C. The differences in promoter usage between normal and cancer cells suggested that they were subject to differential regulation. We found that DNA methylation and functional p53 contributes to the negative regulation of each promoter. Moreover, reduction of CTCF in normally BORIS-negative human fibroblasts resulted in derepression of BORIS promoters. These results provide a mechanistic basis for understanding cancer-related associations between haploinsufficiency of CTCF and BORIS derepression, and between the lack of functional p53 and aberrant activation of BORIS.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regiões 5' não Traduzidas/análise , Processamento Alternativo , Sequência de Bases , Fator de Ligação a CCCTC , Linhagem Celular , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/biossíntese , Humanos , Dados de Sequência Molecular , Neoplasias/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
15.
Mol Cancer Res ; 17(10): 2051-2062, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292201

RESUMO

High-grade serous carcinoma (HGSC) is the most aggressive and predominant form of epithelial ovarian cancer and the leading cause of gynecologic cancer-related death. We have previously shown that CTCFL (also known as BORIS, Brother of the Regulator of Imprinted Sites) is expressed in most ovarian cancers, and is associated with global and promoter-specific DNA hypomethylation, advanced tumor stage, and poor prognosis. To explore its role in HGSC, we expressed BORIS in human fallopian tube secretory epithelial cells (FTSEC), the presumptive cells of origin for HGSC. BORIS-expressing cells exhibited increased motility and invasion, and BORIS expression was associated with alterations in several cancer-associated gene expression networks, including fatty acid metabolism, TNF signaling, cell migration, and ECM-receptor interactions. Importantly, GALNT14, a glycosyltransferase gene implicated in cancer cell migration and invasion, was highly induced by BORIS, and GALNT14 knockdown significantly abrogated BORIS-induced cell motility and invasion. In addition, in silico analyses provided evidence for BORIS and GALNT14 coexpression in several cancers. Finally, ChIP-seq demonstrated that expression of BORIS was associated with de novo and enhanced binding of CTCF at hundreds of loci, many of which correlated with activation of transcription at target genes, including GALNT14. Taken together, our data indicate that BORIS may promote cell motility and invasion in HGSC via upregulation of GALNT14, and suggests BORIS as a potential therapeutic target in this malignancy. IMPLICATIONS: These studies provide evidence that aberrant expression of BORIS may play a role in the progression to HGSC by enhancing the migratory and invasive properties of FTSEC.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Ligação a DNA/genética , N-Acetilgalactosaminiltransferases/genética , Neoplasias Ovarianas/genética , Fator de Ligação a CCCTC/metabolismo , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Feminino , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Transfecção
16.
Mol Cell Biol ; 25(24): 11184-90, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16314537

RESUMO

Imprinted methylation of the paternal Rasgrf1 allele in mice occurs at a differentially methylated domain (DMD) 30 kbp 5' of the promoter. A repeated sequence 3' of the DMD regulates imprinted methylation, which is required for imprinted expression. Here we identify the mechanism by which methylation controls imprinting. The DMD is an enhancer blocker that binds CTCF in a methylation-sensitive manner. CTCF bound to the unmethylated maternal allele silences expression. CTCF binding to the paternal allele is prevented by repeat-mediated methylation, allowing expression. Optimal in vitro enhancer-blocking activity requires CTCF binding sites. The enhancer blocker can be bypassed in vivo and imprinting abolished by placing an extra enhancer proximal to the promoter. Together, the repeats and the DMD constitute a binary switch that regulates Rasgrf1 imprinting.


Assuntos
Proteínas de Transporte/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Impressão Genômica , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Proteínas Ativadoras de GTPase , Camundongos , Modelos Genéticos
17.
Clin Cancer Res ; 13(6): 1713-9, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17363524

RESUMO

PURPOSE: Cancer/testis (CT) genes predominantly expressed in the testis (germ cells) and generally not in other normal tissues are aberrantly expressed in human cancers. This highly restricted expression provides a unique opportunity to use these CT genes for diagnostics, immunotherapeutic, or other targeted therapies. The purpose of this study was to identify those CT genes with the greatest incidence of expression in uterine cancers. EXPERIMENTAL DESIGN: We queried the expression of known and putative CT gene transcripts (representing 79 gene loci) using whole genome gene expression arrays. Specifically, the global gene expressions of uterine cancers (n = 122) and normal uteri (n = 10) were determined using expression data from the Affymetrix HG-U133A and HG-U133B chips. Additionally, we also examined the brother of the regulator of imprinted sites (BORIS) transcript by reverse transcription-PCR and quantitative PCR because its transcript was not represented on the array. RESULTS: Global microarray analysis detected many CT genes expressed in various uterine cancers; however, no individual CT gene was expressed in more than 25% of all cancers. The expression of the two most commonly expressed CT genes on the arrays, MAGEA9 (24 of 122 cancers and 0 of 10 normal tissues) and Down syndrome critical region 8 (DSCR8)/MMA1 (16 if 122 cancers and 0 of 10 normal tissues), was confirmed by reverse transcription-PCR methods, validating the array screening approach. In contrast to the relatively low incidence of expression of the other CT genes, BORIS expression was detected in 73 of 95 (77%) endometrial cancers and 24 of 31 (77%) uterine mixed mesodermal tumors. CONCLUSIONS: These data provide the first extensive survey of multiple CT genes in uterine cancers. Importantly, we detected a high frequency of BORIS expression in uterine cancers, suggesting its potential as an immunologic or diagnostic target for these cancers. Given the high incidence of BORIS expression and its possible regulatory role, an examination of BORIS function in the etiology of these cancers is warranted.


Assuntos
Carcinoma/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Análise de Sequência com Séries de Oligonucleotídeos , Testículo/metabolismo , Neoplasias Uterinas/genética , Antígenos de Neoplasias/metabolismo , Carcinoma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Neoplasias Uterinas/metabolismo
18.
Nucleic Acids Res ; 33(21): 6850-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16326864

RESUMO

The expression of the catalytic subunit (hTERT) represents the limiting factor for telomerase activity. Previously, we detected a transcriptional repressor effect of the proximal exonic region (first two exons) of the hTERT gene. To better understand the mechanism involved and to identify a potential repressor, we further characterized this region. The addition of the hTERT proximal exonic region downstream of the hTERT minimal promoter strongly reduced promoter transcriptional activity in all cells tested (tumor, normal and immortalized). This exonic region also significantly inhibited the transcriptional activity of the CMV and CDKN2A promoters, regardless of the cell type. Therefore, the repressor effect of hTERT exonic region is neither cell nor promoter-dependent. However, the distance between the promoter and the exonic region can modulate this repressor effect, suggesting that nucleosome positioning plays a role in transcriptional repression. We showed by electrophoretic mobility shift assay that CCCTC-binding factor (CTCF) binds to the proximal exonic region of hTERT. Chromatin immunoprecipitaion assays confirmed the binding of CTCF to this region. CTCF is bound to hTERT in cells in which hTERT is not expressed, but not in telomerase-positive ones. Moreover, the transcriptional downregulation of CTCF by RNA interference derepressed hTERT gene expression in normal telomerase-negative cells. Our results suggest that CTCF participates in key cellular mechanisms underlying immortality by regulating hTERT gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Proteínas Repressoras/metabolismo , Telomerase/genética , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/biossíntese , Éxons , Humanos , Regiões Promotoras Genéticas , Telomerase/biossíntese , Transcrição Gênica
19.
Cancer Res ; 65(17): 7751-62, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16140943

RESUMO

Brother of the Regulator of Imprinted Sites (BORIS) is a mammalian CTCF paralog with the same central 11Zn fingers (11ZF) that mediate specific interactions with varying approximately 50-bp target sites. Regulated in vivo occupancy of such sites may yield structurally and functionally distinct CTCF/DNA complexes involved in various aspects of gene regulation, including epigenetic control of gene imprinting and X chromosome inactivation. The latter functions are mediated by meCpG-sensitive 11ZF binding. Because CTCF is normally present in all somatic cells, whereas BORIS is active only in CTCF- and 5-methylcytosine-deficient adult male germ cells, switching DNA occupancy from CTCF to BORIS was suggested to regulate site specificity and timing of epigenetic reprogramming. In addition to 11ZF-binding paternal imprinting control regions, cancer-testis gene promoters also undergo remethylation during CTCF/BORIS switching in germ cells. Only promoters of cancer testis genes are normally silenced in all somatic cells but activated during spermatogenesis when demethylated in BORIS-positive germ cells and are found aberrantly derepressed in various tumors. We show here that BORIS is also expressed in multiple cancers and is thus itself a cancer-testis gene and that conditional expression of BORIS in normal fibroblasts activates cancer-testis genes selectively. We tested if replacement of CTCF by BORIS on regulatory DNA occurs in vivo on activation of a prototype cancer-testis gene, MAGE-A1. Transition from a hypermethylated/silenced to a hypomethylated/activated status induced in normal cells by 5-aza-2'-deoxycytidine (5-azadC) was mimicked by conditional input of BORIS and is associated with complete switching from CTCF to BORIS occupancy at a single 11ZF target. This site manifested a novel type of CTCF/BORIS 11ZF binding insensitive to CpG methylation. Whereas 5-azadC induction of BORIS takes only few hours, derepression of MAGE-A1 occurred 1 to 2 days later, suggesting that BORIS mediates cancer-testis gene activation by 5-azadC. Indeed, infection of normal fibroblasts with anti-BORIS short hairpin RNA retroviruses before treatment with 5-azadC blocked reactivation of MAGE-A1. We suggest that BORIS is likely tethering epigenetic machinery to a novel class of CTCF/BORIS 11ZF target sequences that mediate induction of cancer-testis genes.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Neoplasias/genética , Animais , Antígenos de Neoplasias , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Decitabina , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Antígenos Específicos de Melanoma , Dados de Sequência Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , Retroviridae/genética , Ativação Transcricional , Transfecção
20.
Cancer Res ; 65(17): 7763-74, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16140944

RESUMO

Regulatory sequences recognized by the unique pair of paralogous factors, CTCF and BORIS, have been implicated in epigenetic regulation of imprinting and X chromosome inactivation. Lung cancers exhibit genome-wide demethylation associated with derepression of a specific class of genes encoding cancer-testis (CT) antigens such as NY-ESO-1. CT genes are normally expressed in BORIS-positive male germ cells deficient in CTCF and meCpG contents, but are strictly silenced in somatic cells. The present study was undertaken to ascertain if aberrant activation of BORIS contributes to derepression of NY-ESO-1 during pulmonary carcinogenesis. Preliminary experiments indicated that NY-ESO-1 expression coincided with derepression of BORIS in cultured lung cancer cells. Quantitative reverse transcription-PCR analysis revealed robust, coincident induction of BORIS and NY-ESO-1 expression in lung cancer cells, but not normal human bronchial epithelial cells following 5-aza-2'-deoxycytidine (5-azadC), Depsipeptide FK228 (DP), or sequential 5-azadC/DP exposure under clinically relevant conditions. Bisulfite sequencing, methylation-specific PCR, and chromatin immunoprecipitation (ChIP) experiments showed that induction of BORIS coincided with direct modulation of chromatin structure within a CpG island in the 5'-flanking noncoding region of this gene. Cotransfection experiments using promoter-reporter constructs confirmed that BORIS modulates NY-ESO-1 expression in lung cancer cells. Gel shift and ChIP experiments revealed a novel CTCF/BORIS-binding site in the NY-ESO-1 promoter, which unlike such sites in the H19-imprinting control region and X chromosome, is insensitive to CpG methylation in vitro. In vivo occupancy of this site by CTCF was associated with silencing of the NY-ESO-1 promoter, whereas switching from CTCF to BORIS occupancy coincided with derepression of NY-ESO-1. Collectively, these data indicate that reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter mediates epigenetic regulation of this CT gene in lung cancer cells, and suggest that induction of BORIS may be a novel strategy to augment immunogenicity of pulmonary carcinomas.


Assuntos
Antígenos de Neoplasias/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Proteínas Repressoras/metabolismo , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/metabolismo , Sequência de Bases , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfitos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA