Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Mol Ther ; 31(7): 2240-2256, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016577

RESUMO

Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Estresse do Retículo Endoplasmático/genética , Camundongos Transgênicos , Proteômica , Proteostase/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética
2.
Alzheimers Dement ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934107

RESUMO

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.

3.
J Neurochem ; 166(1): 3-6, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414435

RESUMO

This preface introduces the Journal of Neurochemistry Special Issue on Brain Proteostasis. Adequate control of protein homeostasis, or proteostasis, has been at the center stage of brain physiology, and its deregulation may contribute to brain diseases, including several neuropsychiatric and neurodegenerative conditions. Therefore, delineating the processes underlying protein synthesis, folding, stability, function, and degradation in brain cells is key to promoting brain function and identifying effective therapeutic options for neurological disorders. This special issue comprises four review articles and four original articles covering the roles of protein homeostasis in several mechanisms that are of relevance to sleep, depression, stroke, dementia, and COVID-19. Thus, these articles highlight different aspects of proteostasis regulation in the brain and present important evidence on this growing and exciting field.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Deficiências na Proteostase , Humanos , Proteostase/fisiologia , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo
4.
J Neurochem ; 166(1): 7-9, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414436

RESUMO

Mychael Lourenco is an Assistant Professor of Neuroscience at the Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro. Research in his lab focusses on understanding the molecular mechanisms underlying cognitive impairment in neurodegeneration and his research on Alzheimer's disease has been recognized by many awards both in Brazil and internationally. He serves as a Reviews Editor for the Journal of Neurochemistry and led this special issue on Brain Proteostasis as a Guest Editor. Here we interviewed him to hear his thoughts on the future of neuroscience and on career development and training.


Assuntos
Neuroquímica , Proteostase , Encéfalo , Brasil
5.
Alzheimers Dement ; 19(6): 2595-2604, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36465055

RESUMO

INTRODUCTION: Depression is frequent among older adults and is a risk factor for dementia. Identifying molecular links between depression and dementia is necessary to shed light on shared disease mechanisms. Reduced brain-derived neurotrophic factor (BDNF) and neuroinflammation are implicated in the pathophysiology of depression and dementia. The exercise-induced hormone, irisin, increases BDNF and improves cognition in animal models of Alzheimer's disease. Lipoxin A4 is a lipid mediator with anti-inflammatory activity. However, the roles of irisin and lipoxin A4 in depression remain to be determined. METHODS: In the present study, blood and CSF were collected from 61 elderly subjects, including individuals with and without cognitive impairment. Screening for symptoms of depression was performed using the 15-item Geriatric Depression Scale (GDS-15). RESULTS: CSF irisin and lipoxin A4 were positively correlated and reduced, along with a trend of BDNF reduction, in elderly individuals with depression, similar to previous observations in patients with dementia. DISCUSSION: Our findings provide novel insight into shared molecular signatures connecting depression and dementia.


Assuntos
Doença de Alzheimer , Lipoxinas , Animais , Depressão/psicologia , Fator Neurotrófico Derivado do Encéfalo , Fibronectinas , Brasil
6.
J Neurochem ; 161(4): 316-319, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243650

RESUMO

This Editorial highlights the knighthood recognition of Sir John Hardy, Professor and Chair at the University College London, for his exceptional services to human health and dementia research. We also celebrate his successful trajectory in neurochemistry and neurogenetics, and acknowledge his long-standing contributions to the Journal of Neurochemistry as an author and editor. John Hardy's research identified key mutations linked to prevalent neurodegenerative diseases in humans and contributed to our understanding of the molecular pathogenesis of Alzheimer disease. As John's career has inspired many generations of researchers in neurochemistry, we present a brief Q&A interview with him on the occasion of his most recent recognition.


Assuntos
Doença de Alzheimer , Neuroquímica , Neurociências , Doença de Alzheimer/genética , Humanos , Masculino , Mutação
7.
J Neurosci ; 40(1): 101-106, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896564

RESUMO

On the 50th anniversary of the Society for Neuroscience, we reflect on the remarkable progress that the field has made in understanding the nervous system, and look forward to the contributions of the next 50 years. We predict a substantial acceleration of our understanding of the nervous system that will drive the development of new therapeutic strategies to treat diseases over the course of the next five decades. We also see neuroscience at the nexus of many societal topics beyond medicine, including education, consumerism, and the justice system. In combination, advances made by basic, translational, and clinical neuroscience research in the next 50 years have great potential for lasting improvements in human health, the economy, and society.


Assuntos
Neurociências/tendências , Animais , Comportamento Animal , Previsões , Edição de Genes , História do Século XX , História do Século XXI , Humanos , Comunicação Interdisciplinar , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Transtornos Mentais/terapia , Rede Nervosa/fisiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Neurogênese , Neurociências/história , Organoides , Pesquisa , Mudança Social
8.
J Neurochem ; 155(6): 602-611, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32396989

RESUMO

The proportion of elderly populations is rapidly booming, and human lifespan has considerably increased in the past century because of scientific and medical advances. However, the winds of change brought by the 21st century made sedentarism one of the factors that renders the brain vulnerable to age-related chronic diseases, such as Alzheimer's disease (AD). Conversely, physical exercise has been shown to stimulate molecular mechanisms beneficial to cognition. Here, we review evidence showing the positive effects of physical exercise in the brain. We further discuss recent evidence that irisin, a myokine stimulated by physical exercise derived from fibronectin type III domain-containing protein 5 (FNDC5) transmembrane protein, has neuroprotective actions in the brain. Lastly, we highlight the importance of the crosstalk between the periphery and the brain in cognition and the therapeutic potential of FNDC5/irisin in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Exercício Físico/fisiologia , Fibronectinas/metabolismo , Memória/fisiologia , Doença de Alzheimer/psicologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Exercício Físico/psicologia , Humanos , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia
9.
J Neurochem ; 155(4): 348-369, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32320074

RESUMO

Amyloid-ß (Aß) dysmetabolism is tightly associated with pathological processes in Alzheimer's disease (AD). Currently, it is thought that, in addition to Aß fibrils that give rise to plaque formation, Aß aggregates into non-fibrillar soluble oligomers (AßOs). Soluble AßOs have been extensively studied for their synaptotoxic and neurotoxic properties. In this review, we discuss physicochemical properties of AßOs and their impact on different brain cell types in AD. Additionally, we summarize three decades of studies with AßOs, providing a compelling bulk of evidence regarding cell-specific mechanisms of toxicity. Cellular models may lead us to a deeper understanding of the detrimental effects of AßOs in neurons and glial cells, putatively shedding light on the development of innovative therapies for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Células Cultivadas , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
10.
J Biol Chem ; 292(18): 7395-7406, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302722

RESUMO

AMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently. Here, we report the impact of Aß oligomers (AßOs), synaptotoxins that accumulate in AD brains, on neuronal AMPK activity. Short-term exposure of cultured rat hippocampal neurons or ex vivo human cortical slices to AßOs transiently decreased intracellular ATP levels and AMPK activity, as evaluated by its phosphorylation at threonine residue 172 (AMPK-Thr(P)172). The AßO-dependent reduction in AMPK-Thr(P)172 levels was mediated by glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype and resulted in removal of glucose transporters (GLUTs) from the surfaces of dendritic processes in hippocampal neurons. Importantly, insulin prevented the AßO-induced inhibition of AMPK. Our results establish a novel toxic impact of AßOs on neuronal metabolism and suggest that AßO-induced, NMDA receptor-mediated AMPK inhibition may play a key role in early brain metabolic defects in AD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipocampo/patologia , Humanos , Insulina/farmacologia , Neurônios/patologia , Fragmentos de Peptídeos/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
11.
J Biol Chem ; 292(18): 7327-7337, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28283575

RESUMO

Brain accumulation of the amyloid-ß protein (Aß) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aß oligomers (AßOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AßOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AßOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AßOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AßO binding to hippocampal neurons and prevented AßO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AßOs in mice. The results indicate that Nrx2α and NL1 are targets of AßOs and that prevention of this interaction reduces the deleterious impact of AßOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AßOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/patologia , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Wistar , Sinapses/genética
12.
J Neurochem ; 142(6): 790-811, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28632905

RESUMO

One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on page 788. Cover Image for this issue: doi: 10.1111/jnc.13815.

13.
J Neurochem ; 138(6): 785-805, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27333343

RESUMO

Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.


Assuntos
Doenças do Sistema Nervoso/patologia , Sinapses/patologia , Adulto , Criança , Humanos , Doenças Neurodegenerativas/patologia
14.
Alzheimers Dement ; 10(1 Suppl): S26-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24529521

RESUMO

Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Encéfalo/fisiopatologia , Resistência à Insulina , Doenças Metabólicas/etiologia , Animais , Humanos
15.
Trends Endocrinol Metab ; 35(2): 94-96, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101996

RESUMO

Mounting evidence suggests that physical exercise protects the brain against neurodegenerative disease. In a recent paper in Neuron, Kim et al. reported that the exercise-induced hormone irisin curbs amyloid-ß buildup by promoting secretion of astrocyte-derived neprilysin. These findings may help explain the neuroprotection by irisin and exercise in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Fibronectinas/farmacologia , Peptídeos beta-Amiloides/farmacologia , Exercício Físico
16.
Neuroscience ; 543: 37-48, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38401710

RESUMO

Abnormal cognitive and sensorial properties have been reported in patients with psychiatric and neurodevelopmental conditions, such as attention deficit hyperactivity disorder (ADHD). ADHD patients exhibit impaired dopaminergic signaling and plasticity in brain areas related to cognitive and sensory processing. The spontaneous hypertensive rat (SHR), in comparison to the Wistar Kyoto rat (WKY), is the most used genetic animal model to study ADHD. Brain neurotrophic factor (BDNF), critical for midbrain and hippocampal dopaminergic neuron survival and differentiation, is reduced in both ADHD subjects and SHR. Physical exercise (e.g. swimming) promotes neuroplasticity and improves cognition by increasing BDNF and irisin. Here we investigate the effects of gestational swimming on sensorial and behavioral phenotypes, striatal dopaminergic parameters, and hippocampal FNDC5/irisin and BDNF levels observed in WKY and SHR. Gestational swimming improved nociception in SHR rats (p = 0.006) and increased hippocampal BDNF levels (p = 0.02) in a sex-dependent manner in adolescent offspring. Sex differences were observed in hippocampal FNDC5/irisin levels (p = 0.002), with females presenting lower levels than males. Our results contribute to the notion that swimming during pregnancy is a promising alternative to improve ADHD phenotypes in the offspring.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Ratos , Feminino , Masculino , Animais , Adolescente , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fibronectinas , Nociceptividade , Encéfalo/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Modelos Animais de Doenças
17.
iScience ; 27(1): 108671, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38292167

RESUMO

Alzheimer's disease (AD) is a multifactorial pathology, with most cases having a sporadic origin. Recently, knock-in (KI) mouse models, such as the novel humanized amyloid-ß (hAß)-KI, have been developed to better resemble sporadic human AD. METHODS: Here, we compared hippocampal publicly available transcriptomic profiles of transgenic (5xFAD and APP/PS1) and KI (hAß-KI) mouse models with early- (EOAD) and late- (LOAD) onset AD patients. RESULTS: The three mouse models presented more Gene Ontology biological processes terms and enriched signaling pathways in common with LOAD than with EOAD individuals. Experimental validation of consistently dysregulated genes revealed five altered in mice (SLC11A1, S100A6, CD14, CD33, and C1QB) and three in humans (S100A6, SLC11A1, and KCNK). Finally, we identified 17 transcription factors potentially acting as master regulators of AD. CONCLUSION: Our cross-species analyses revealed that the three mouse models presented a remarkable similarity to LOAD, with the hAß-KI being the more specific one.

18.
Neurosci Biobehav Rev ; 152: 105246, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236385

RESUMO

Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/patologia , Biomarcadores , Descoberta de Drogas
19.
Alzheimers Dement (N Y) ; 9(1): e12378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969382

RESUMO

Alzheimer's disease (AD) is a global health issue. Because AD is a condition demanding effective management, its socioeconomic burden is immense and threatens the health systems of both low- and middle-income (LMIC) and high-income (HIC) countries. However, while most of the HICs are increasing their budget for AD research, the situation is different in LMICs, and resources are scarce. In addition, LMIC researchers face significant barriers to publishing in international peer reviewed journals, including funding constraints; language barriers; and in many cases, high article processing charges. In this perspective, we discuss these disparities and propose some actions that could help promote diversity, and ultimately translate into improved AD research capacity in LMICs, especially in Latin American and Caribbean countries. HIGHLIGHTS: Researchers in low- and middle-income countries (LMIC) face increasing difficulties such as financial constraints, language barriers, and article processing charges.Publication fees, in particular, can be a significant barrier in the process of publication and equal access to scientific information.Publication fee equalization initiatives by publishing companies could reduce the scientific inequality that disadvantages researchers in LMICs.

20.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697257

RESUMO

Major depressive disorder (MDD) is a major cause of disability in adults. MDD is both a comorbidity and a risk factor for Alzheimer's disease (AD), and regular physical exercise has been associated with reduced incidence and severity of MDD and AD. Irisin is an exercise-induced myokine derived from proteolytic processing of fibronectin type III domain-containing protein 5 (FNDC5). FNDC5/irisin is reduced in the brains of AD patients and mouse models. However, whether brain FNDC5/irisin expression is altered in depression remains elusive. Here, we investigate changes in fndc5 expression in postmortem brain tissue from MDD individuals and mouse models of depression. We found decreased fndc5 expression in the MDD prefrontal cortex, both with and without psychotic traits. We further demonstrate that the induction of depressive-like behavior in male mice by lipopolysaccharide decreased fndc5 expression in the frontal cortex, but not in the hippocampus. Conversely, chronic corticosterone administration increased fndc5 expression in the frontal cortex, but not in the hippocampus. Social isolation in mice did not result in altered fndc5 expression in either frontal cortex or hippocampus. Finally, fluoxetine, but not other antidepressants, increased fndc5 gene expression in the mouse frontal cortex. Results indicate a region-specific modulation of fndc5 in depressive-like behavior and by antidepressant in mice. Our finding of decreased prefrontal cortex fndc5 expression in MDD individuals differs from results in mice, highlighting the importance of carefully interpreting observations in mice. The reduction in fndc5 mRNA suggests that decreased central FNDC5/irisin could comprise a shared pathologic mechanism between MDD and AD.


Assuntos
Transtorno Depressivo Maior , Masculino , Camundongos , Animais , Transtorno Depressivo Maior/metabolismo , Depressão , Fibronectinas/genética , Fibronectinas/metabolismo , Encéfalo/metabolismo , Fatores de Transcrição/metabolismo , Modelos Animais de Doenças , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA