RESUMO
A series of iso-carbamate complexes have been synthesized by the reaction of [SnII(OiPr)2] or [SnII(OtBu)2] with either aryl or alkyl isocyanates, ONC-R (R = 2,4,6-trimethylphenyl (Mes), 2,6-diisopropylphenyl (Dipp), isopropyl (iPr), cyclohexyl (Cy) and tert-butyl (tBu)). In the case of aryl isocyanates, mono-insertion occurs to form structurally characterized complexes [Sn{κ2-N,O-R-NC(OiPr)O}(µ-OiPr)]2 (1: R = Mes, 2: R = Dipp) and [Sn{κ2-N,O-R-NC(OtBu)O}(µ-OtBu)]2 (3: R = Mes, 4: R = Dipp). The complicated solution-state chemistry of these species has been explored using 1H DOSY experiments. In contrast, reactions of tin(II) alkoxides with alkyl isocyanates result in the formation of bis-insertion products [Sn{κ2-N,O-R-NC(OiPr)O}2] (5: R = iPr, and 6: R = Cy) and [Sn{κ2-N,O-R-NC(OtBu)O}2] (7: R = iPr, 8: R = Cy), of which complexes 6-8 have also been structurally characterized. 1H NMR studies show that the reaction of tBu-NCO with either [Sn(OiPr)2] or [Sn(OtBu)2] results in a reversible mono-insertion. Variable-temperature 2D 1H-1H exchange spectroscopy (VT-2D-EXSY) was used to determine the rate of exchange between free tBu-NCO and the coordinated tBu-iso-carbamate ligand for the {OiPr} alkoxide complex, as well as the activation energy (Ea = 92.2 ± 0.8 kJ mol-1), enthalpy (ΔH = 89.4 ± 0.8 kJ mol-1), and entropy (ΔS = 12.6 ± 2.9 J mol-1 K-1) for the process [Sn(OiPr)2] + tBu-NCO â [Sn{κ2-N,O-tBu-NC(OiPr)O}(OiPr)]. Attempts to form Sn(II) alkyl carbonates by the insertion of CO2 into either [Sn(OiPr)2] or [Sn(OtBu)2] proved unsuccessful. However, 119Sn{1H} NMR spectroscopy of the reaction of excess CO2 with [Sn(OiPr)2] reveals the presence of a new Sn(II) species, i.e., [(iPrO)Sn(O2COiPr)], VT-2D-EXSY (1H) of which confirms the reversible alkyl carbonate formation (Ea = 70.3 ± 13.0 kJ mol-1; ΔH = 68.0 ± 1.3 kJ mol-1 and ΔS = -8.07 ± 2.8 J mol-1 K-1).
RESUMO
1H NMR spectroscopic studies using BINOL as a chiral solvating agent (CSA) for a scalemic sulfiniminoboronic acid (SIBA) have revealed concentration- and enantiopurity-dependent variations in the chemical shifts of diagnostic imine protons used to determine enantiopurity levels. 11B/15N NMR spectroscopic studies and X-ray structural investigations revealed that unlike other iminoboronate species, BINOL-SIBA assemblies do not contain N-B coordination bonds, with 1H NMR NOESY experiments indicating that intermolecular H-bonding networks between BINOL and the SIBA analyte are responsible for these variations. These effects can lead to diastereomeric signal overlap at certain er values that could potentially lead to enantiopurity/configuration misassignments. Consequently, it is recommended that hydrogen-bonding-CSA-based 1H NMR protocols should be repeated using both CSA enantiomers to ensure that any concentration- and/or er-dependent variations in diagnostic chemical shifts are accounted for when determining the enantiopurity of a scalemic analyte.
RESUMO
Sensitivity in FlowNMR spectroscopy for reaction monitoring often suffers from low levels of pre-magnetisation due to limited residence times of the sample in the magnetic field. While this in-flow effect is tolerable for high sensitivity nuclei such as 1 H and 19 F, it significantly reduces the signal-to-noise ratio in 31 P and 13 C spectra, making FlowNMR impractical for low sensititvity nuclei at low concentrations. Paramagnetic relaxation agents (PRAs), which enhance polarisation and spin-lattice relaxation, could eliminate the adverse in-flow effect and improve the signal-to-noise ratio. Herein, [Co(acac)3 ], [Mn(acac)3 ], [Fe(acac)3 ], [Cr(acac)3 ], [Ni(acac)2 ]3, [Gd(tmhd)3 ] and [Cr(tmhd)3 ] are investigated for their effectiveness in improving signal intensity per unit time in FlowNMR applications under the additional constraint of chemical inertness towards catalytically active transition metal complexes. High-spin Cr(III) acetylacetonates emerged as the most effective compounds, successfully reducing 31 P T1 values four- to five-fold at PRA concentrations as low as 10â mM without causing adverse line broadening. Whereas [Cr(acac)3 ] showed signs of chemical reactivity with a mixture of triphenylphosphine, triphenylphosphine oxide and triphenylphosphate over the course of several hours at 80° C, the bulkier [Cr(tmhd)3 ] was stable and equally effective as a PRA under these conditions. Compatibility with a range of representative transition metal complexes often used in homogeneous catalysis has been investigated, and application of [Cr(tmhd)3 ] in significantly improving 1 H and 31 P{1 H} FlowNMR data quality in a Rh-catalysed hydroformylation reaction has been demonstrated. With the PRA added, 13 C relaxation times were reduced more than six-fold, allowing quantitative reaction monitoring of substrate consumption and product formation by 13 C{1 H} FlowNMR spectroscopy at natural abundance.
Assuntos
Complexos de Coordenação , Elementos de Transição , Complexos de Coordenação/química , Espectroscopia de Ressonância Magnética/métodosRESUMO
A family of zinc phosphate complexes supported by nitrogen donor-base ligands have been synthesized, and their molecular structures were identified in both the solid (X-ray crystallography) and solution state (DOSY NMR spectroscopy). [Zn{O2P(OPh)2}2]∞ (1), formed from the reaction of Zn[N(SiMe3)2]2 with HO(O)P(OPh)2 coordinates to donor-base ligands, i.e., pyridine (Py), 4-methylpyridine (4-MePy), 2,2-bipyridine (bipy), tetramethylethylenediamine (TMEDA), pentamethyldiethylenetriamine (PMDETA), and 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me3-TAC), to produce polymeric 1D structures, [(Py)2Zn{O2P(OPh)2}2]∞ (2) and [(4-MePy)2Zn{O2P(OPh)2}2]∞ (3), the bimetalic systems, [(Bipy)Zn{O2P(OPh)2}2]2 (4), [(TMEDA)Zn{O2P(OPh)2}2]2 (5), and [(Me3-TAC)Zn{O2P(OPh)2}2]2 (7), as well as a mono-nuclear zinc bis-diphenylphosphate complex, [(PMDETA)Zn{O2P(OPh)2}2] (6). 1H NMR DOSY has been used to calculate averaged molecular weights of the species. Studies are consistent with the disassembly of polymeric 3 into the bimetallic species [(Me-Py)2·Zn2{O2P(OPh)2}4], where the Me-Py ligand is in rapid exchange with free Me-Py in solution. Further 1H DOSY NMR studies of 4 and 5 reveal that dissolution of the complex results in a monomer dimer equilibrium, i.e., [(Bipy)Zn{O2P(OPh)2}2]2 â 2[(Bipy)Zn{O2P(OPh)2}2] and [(TMEDA)Zn{O2P(OPh)2}2]2 â 2[(TMEDA)Zn{O2P(OPh)2}2], respectively, in which the equilibria lie toward formation of the monomer. As part of our studies, variable temperature 1H DOSY experiments (223 to 313 K) were performed upon 5 in d8-tol, which allowed us to approximate the enthalpy [ΔH = -43.2 kJ mol-1 (±3.79)], entropy [ΔS = 109 J mol-1 K-1 (±13.9)], and approximate Gibbs free energy [ΔG = 75.6 kJ mol-1 (±5.62) at 293 K)] of monomer-dimer equilibria. While complex 6 is shown to maintain its monomeric solid-state structure, 1H DOSY experiments of 7 at 298 K reveal two separate normalized diffusion coefficients consistent with the presence of the bimetallic species [(TAC)2-xZn2{O2P(OPh)2}4], (x = 1 or 0) and free TAC ligand.
RESUMO
Thermolysis of a 1,3-dioxa-2-phospholane supported by the terphenyl ligand AriPr4 (AriPr4 =[C6 H3 -2,6-(C6 H3 -2,6-iPr2 )]) at 150 °C gives [AriPr4 PO2 ]2 via loss of ethene. [AriPr4 PO2 ]2 was characterised by X-ray crystallography and NMR spectroscopy; it contains a 4-membered P-O-P-O ring and is the isostructural oxygen analogue of Lawesson's and Woollins' reagents. The dimeric structure of [AriPr4 PO2 ]2 was found to persist in solution through VTâ NMR spectroscopy and DOSY, supported by DFT calculations. The addition of DMAP to the 1,3-dioxa-2-phospholane facilitates the loss of ethene to give AriPr4 (DMAP)PO2 after days at room temperature, with this product also characterised by X-ray crystallography and NMR spectroscopy. Replacement of the DMAP with pyridine induces ethene loss from the 1,3-dioxa-2-phospholane to provide gram-scale samples of [AriPr4 PO2 ]2 in 75 % yield in 2â days at only 100 °C.
RESUMO
The syntheses, reactivity and electronic structure analyses of [Ru(PPh3 )2 (ZnMe)4 H2 ], 1 a, and [Ru(PPh3 )2 (ZnPh)4 H2 ], 2 b, are reported. 1 a exhibits an 8-coordinate Ru centre with axial phosphines and a symmetrical (2 : 2) arrangement of ZnMe ligands in the equatorial plane. The ZnMe ligands in 1 a undergo facile, sequential exchange with ZnPh2 to give 2 b, which shows a 3 : 1 arrangement of ZnPh ligands. Both 1 a and 2 b exist in equilibrium with their respective 3 : 1 and 2 : 2 isomers. Mechanisms for ZnMe/ZnPh exchange and isomerisation are proposed using DFT calculations. The relationships of these {Ru(ZnR)4 H2 } species to isoelectronic Group 8 transition metal polyhydrides and related Schlenk equilibria in the Negishi reaction are discussed.
RESUMO
The addition of PPh2 H, PPhMeH, PPhH2 , P(para-Tol)H2 , PMesH2 and PH3 to the two-coordinate Ni0 N-heterocyclic carbene species [Ni(NHC)2 ] (NHC=IiPr2 , IMe4 , IEt2 Me2 ) affords a series of mononuclear, terminal phosphido nickel complexes. Structural characterisation of nine of these compounds shows that they have unusual trans [H-Ni-PR2 ] or novel trans [R2 P-Ni-PR2 ] geometries. The bis-phosphido complexes are more accessible when smaller NHCs (IMe4 >IEt2 Me2 >IiPr2 ) and phosphines are employed. P-P activation of the diphosphines R2 P-PR2 (R2 =Ph2 , PhMe) provides an alternative route to some of the [Ni(NHC)2 (PR2 )2 ] complexes. DFT calculations capture these trends with P-H bond activation proceeding from unconventional phosphine adducts in which the H substituent bridges the Ni-P bond. P-P bond activation from [Ni(NHC)2 (Ph2 P-PPh2 )] adducts proceeds with computed barriers below 10â kcal mol-1 . The ability of the [Ni(NHC)2 ] moiety to afford isolable terminal phosphido products reflects the stability of the Ni-NHC bond that prevents ligand dissociation and onward reaction.
RESUMO
The hydroformylation of 1-hexene with 12 bar of 1 : 1 H2/CO in the presence of the catalytic system [Rh(acac)(CO)2]/PPh3 was successfully studied by real-time multinuclear high-resolution FlowNMR spectroscopy at 50 °C. Quantitative reaction progress curves that yield rates as well as chemo- and regioselectivities have been obtained with varying P/Rh loadings. Dissolved H2 can be monitored in solution to ensure true operando conditions without gas limitation. 31P{1H} and selective excitation 1H pulse sequences have been periodically interleaved with 1H FlowNMR measurements to detect Rh-phosphine intermediates during the catalysis. Stopped-flow experiments in combination with diffusion measurements and 2D heteronuclear correlation experiments showed the known tris-phosphine complex [RhH(CO)(PPh3)3] to generate rapidly exchanging isomers of the bis-phosphine complex [Rh(CO)2(PPh3)2] under CO pressure that directly enter the catalytic cycle. A new mono-phosphine acyl complex has been identified as an in-cycle reaction intermediate.
RESUMO
A combined experimental and computational study of the structure and reactivity of two [RuZn2Me2] complexes, neutral [Ru(PPh3)(Ph2PC6H4)2(ZnMe)2] (2) and cationic [Ru(PPh3)2(Ph2PC6H4)(ZnMe)2][BArF4] ([BArF4] = [B{3,5-(CF3)2C6H3}4]) (3), is presented. Structural and computational analyses indicate these complexes are best formulated as containing discrete ZnMe ligands in which direct Ru-Zn bonding is complemented by weaker Zn···Zn interactions. The latter are stronger in 2, and both complexes exhibit an additional Zn···Caryl interaction with a cyclometalated phosphine ligand, this being stronger in 3. Both 2 and 3 show diverse reactivity under thermolysis and with Lewis bases (PnBu3, PCy3, and IMes). With 3, all three Lewis bases result in the loss of [ZnMe]+. In contrast, 2 undergoes PPh3 substitution with PnBu3, but with IMes, loss of ZnMe2 occurs to form [Ru(PPh3)(C6H4PPh2)(C6H4PPhC6H4Zn(IMes))H] (7). The reaction of 3 with H2 affords the cationic trihydride complex [Ru(PPh3)2(ZnMe)2(H)3][BArF4] (12). Computational analyses indicate that both 12 and 7 feature bridging hydrides that are biased toward Ru over Zn.
RESUMO
Reaction of [Ru(PPh3)3HCl] with LiCH2TMS, MgMe2, and ZnMe2 proceeds with chloride abstraction and alkane elimination to form the bis-cyclometalated derivatives [Ru(PPh3)(C6H4PPh2)2H][M'] where [M'] = [Li(THF)2]+ (1), [MgMe(THF)2]+ (3), and [ZnMe]+ (4), respectively. In the presence of 12-crown-4, the reaction with LiCH2TMS yields [Ru(PPh3)(C6H4PPh2)2H][Li(12-crown-4)2] (2). These four complexes demonstrate increasing interaction between M' and the hydride ligand in the [Ru(PPh3)(C6H4PPh2)2H]- anion following the trend 2 (no interaction) < 1 < 3 < 4 both in the solid-state and solution. Zn species 4 is present as three isomers in solution including square-pyramidal [Ru(PPh3)2(C6H4PPh2)(ZnMe)] (5), that is formed via C-H reductive elimination and features unsaturated Ru and Zn centers and an axial Z-type [ZnMe]+ ligand. A [ZnMe]+ adduct of 5, [Ru(PPh3)2(C6H4PPh2)(ZnMe)2][BArF4] (6) can be trapped and structurally characterized. 4 reacts with H2 at -40 °C to form [Ru(PPh3)3(H)3(ZnMe)], 8-Zn, and contrasts the analogous reactions of 1, 2, and 3 that all require heating to 60 °C. This marked difference in reactivity reflects the ability of Zn to promote a rate-limiting C-H reductive elimination step, and calculations attribute this to a significant stabilization of 5 via Ru â Zn donation. 4 therefore acts as a latent source of 5 and this operational "dual unsaturation" highlights the ability of Zn to promote reductive elimination in these heterobimetallic systems. Calculations also highlight the ability of the heterobimetallic systems to stabilize developing protic character of the transferring hydrogen in the rate-limiting C-H reductive elimination transition states.
RESUMO
Transfer hydrogenation of acetophenone from formic acid/triethylamine mixtures catalysed by the Ikariya-Noyori complex [(mesitylene)RuCl(R,R)-(TsDPEN)] has been investigated using simultaneous high-resolution FlowNMR and FlowUV-Vis spectroscopies coupled with on-line sampling head-space mass spectrometry and chiral high-performance liquid chromatography using an integrated, fully automated recirculating flow setup. In line with previous observations, the combined results show a gradual switch from formic acid dehydrogenation to hydrogen transfer mediated by the same Ru-hydride complex, and point to a Ru-formate species as the major catalyst intermediate. Hydrogen bonding in the formic acid/triethylamine mixture emerges as a sensitive 1H NMR probe for the transfer hydrogenation activity of the system and can be used to locate optimum reaction conditions.
RESUMO
The major product of the reaction between Ru(IMe4)2(PPh3)2H2 (1; IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene) and P(C6F5)3 (PCF) is the five-coordinate complex Ru(IMe4)2(PF2{C6F5})(C6F5)H (2), which is formed via a complex series of C-F/P-C bond cleavage and P-F bond formation steps. In contrast, hydrodefluorination of all six ortho C-F bonds in PCF occurs with Ru(PPh3)4H2 to afford Ru(PPh3)3HF (3). NaBArF4 abstracted the fluoride ligand in 3 to give [Ru({η6-C6H5}PPh2)(PPh3)2H][BArF4], while B2pin2 reacted with 3 in C6D6 to yield a mixture of [Ru({η6-C6D6)(PPh3)2H]+ and Ru(PPh3)4H2. The treatment of 3 with HBpin (5 equiv) and HSiR3 (R = Et, Ph; 2 equiv) afforded Ru(PPh3)3(σ-HBpin)H2 and Ru(PPh3)3(SiR3)3H3, respectively. No stable substitution products were generated when 3 was reacted with Me3SiX (X = CF3, C6F5).
RESUMO
Reaction of [Ru(IPr)2(CO)H]BAr(F)4 with ZnEt2 forms the heterobimetallic species [Ru(IPr)2(CO)ZnEt]BAr(F)4 (2), which features an unsupported Ru-Zn bond. 2 reacts with H2 to give [Ru(IPr)2(CO)(η(2)-H2)(H)2ZnEt]BAr(F)4 (3) and [Ru(IPr)2(CO)(H)2ZnEt]BAr(F)4 (4). DFT calculations indicate that H2 activation at 2 proceeds via oxidative cleavage at Ru with concomitant hydride transfer to Zn. 2 can also activate hydridic E-H bonds (E = B, Si), and computed mechanisms for the facile H/H exchange processes observed in 3 and 4 are presented.
RESUMO
A practically simple derivatization protocol for determining the enantiopurity of chiral diols by (1)H NMR spectroscopic analysis is described. Diols were treated with 0.5 equiv of 1,3-phenyldiboronic acid to afford mixtures of diastereomeric boronate esters whose homochiral/heterochiral ratios are an accurate reflection of the diol's enantiopurity.
RESUMO
Poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-PEG) nanoparticles are commonly used as drug carriers in controlled drug release and targeting. To achieve predictable and clinically relevant volumes of drug distribution, nanoparticle size, surface charge, and especially composition and structure must be controlled. Understanding the internal structures within the particles is fundamentally important to explain differences in drug loading and variations in drug release rate. We prepared nanoparticles from ester-terminated PLGA-PEG polymers via nanoprecipitation, and studied the effects of altering the solvent-water miscibility (THF, acetone, and acetonitrile). Morphology, size, polydispersity, and ζ-potential of PLGA-PEG nanoparticles were characterized. Small angle neutron scattering measurements and fitted models revealed the internal nanoparticle structure: PLGA blocks of 7-9 nm are encapsulated inside a fairly dense PEG/water network in a fractal geometry. Particles with a larger PLGA block volume and higher PEG volume fraction in the particle interior result in greater retention of the hydrophilic anticancer drug carboplatin.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Difração de Nêutrons/métodos , Polietilenoglicóis/química , Poliglactina 910/química , Espalhamento a Baixo Ângulo , Nanopartículas/análise , Polietilenoglicóis/análise , Poliglactina 910/análiseRESUMO
Reaction between a ß-diketiminato magnesium hydride and carbon monoxide results in the isolation of a dimeric cis-enediolate species through the reductive coupling of two CO molecules. Under catalytic conditions with PhSiH3 , an observable magnesium formyl species may be intercepted for the mild reductive cleavage of the CO triple bond.
RESUMO
Treatment of CuCl with 1 equiv of the in situ prepared N-mesityl-substituted diamidocarbene 6-MesDAC produced a mixture of the dimeric and trimeric copper complexes [(6-MesDAC)CuCl]2 (1) and [(6-MesDAC)2(CuCl)3] (2). Combining CuCl with isolated, free 6-MesDAC in 1:1 and 3:2 ratios gave just 1 and 2, respectively, while increasing the ratio to >5:1 allowed the isolation of small amounts of the tetrameric copper complex [(6-MesDAC)2(CuCl)4] (3). Efforts to bring about metathesis reactions of 1 with MO(t)Bu (M = Li, Na, K) proved successful only for M = Li to afford the spectroscopically characterized ate product [(6-MesDAC)CuCl·LiO(t)Bu·2THF] (5). Attempts to crystallize this species instead gave a 1:1 mixture of 1 and the monomer [(6-MesDAC)CuCl] (6). The X-ray structures of 1-3 and 1 + 6, along with the cation [Cu(6-MesDAC)2](+) (4), have been determined.
RESUMO
Poly(mandelic acid) (PMA) is an aryl analogue of poly(lactic acid) (PLA) and a biodegradable analogue of polystyrene. The preparation of stereoregular PMA was realized using a pyridine/mandelic acid adduct (Pyâ MA) as an organocatalyst for the ring-opening polymerization (ROP) of the cyclic O-carboxyanhydride (manOCA). Polymers with a narrow polydispersity index and excellent molecular-weight control were prepared at ambient temperature. These highly isotactic chiral polymers exhibit an enhancement of the glass-transition temperature (T(g)) of 15 °C compared to the racemic polymer, suggesting potential future application as high-performance commodity and biomedical materials.
RESUMO
The functionalisation of decalin by means of an "aliphatic Friedel-Crafts" reaction was reported over fifty years ago by Baddeley et al. This protocol is of current relevance in the context of C-H activation and here we demonstrate its applicability to a range of other saturated hydrocarbons. Structural elucidation of the products is described and a mechanistic rationale for their formation is presented. The "aliphatic Friedel-Crafts" procedure allows for production of novel oxygenated building blocks from abundant hydrocarbons and as such can be considered to add significant synthetic value in a single step.
Assuntos
Acetatos/química , Compostos de Alumínio/química , Cloretos/química , Hidrocarbonetos/síntese química , Cloreto de Alumínio , Cristalografia por Raios X , Hidrocarbonetos/química , Modelos Moleculares , Estrutura Molecular , Teoria QuânticaRESUMO
Molecularly rigid polymers with internal charges (positive charges induced by amine methylation) allow electroosmotic water flow to be tuned by adjusting the charge density (the degree of methylation). Here, a microporous polyamine (PIM-EA-TB) is methylated to give a molecularly rigid anion conductor. The electroosmotic drag coefficient (the number of water molecules transported per anion) is shown to increase with a lower degree of methylation. Net water transport (without charge flow) in a coupled anionic diode circuit is demonstrated based on combining low and high electroosmotic drag coefficient materials. The AC-electricity-driven net process offers water transport (or transport of other neutral species, e.g., drugs) with net zero ion transport and without driver electrode side reactions.