Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioessays ; 46(1): e2300143, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985957

RESUMO

Modeling metastasis in animal systems has been an important focus for developing cancer therapeutics. Xenopus laevis is a well-established model, known for its use in identifying genetic mechanisms underlying diseases and disorders in humans. Prior literature has suggested that the drug, ivermectin, can be used in Xenopus to induce melanocytes to convert into a metastatic melanoma-like state, and thus could be ideal for testing possible melanoma therapies in vivo. However, there are notable inconsistencies between ivermectin studies in Xenopus and the application of ivermectin in mammalian systems, that are relevant to cancer and melanoma research. In this review, we examine the ivermectin-induced phenotypes in Xenopus, and we explore the current uses of ivermectin in human research. We conclude that while ivermectin may be a useful drug for many biomedical purposes, it is not ideal to induce a metastatic melanocyte phenotype in Xenopus for testing the effects of potential melanoma therapeutics.


Assuntos
Melanoma , Animais , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Xenopus laevis , Ivermectina/farmacologia , Melanócitos/patologia , Mamíferos
2.
PLoS Genet ; 17(7): e1009647, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228717

RESUMO

The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other's localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.


Assuntos
Axônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Axônios/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Neurônios/metabolismo , Polimerização , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas tau/metabolismo
3.
PLoS Genet ; 17(4): e1009112, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819264

RESUMO

We previously identified a deletion on chromosome 16p12.1 that is mostly inherited and associated with multiple neurodevelopmental outcomes, where severely affected probands carried an excess of rare pathogenic variants compared to mildly affected carrier parents. We hypothesized that the 16p12.1 deletion sensitizes the genome for disease, while "second-hits" in the genetic background modulate the phenotypic trajectory. To test this model, we examined how neurodevelopmental defects conferred by knockdown of individual 16p12.1 homologs are modulated by simultaneous knockdown of homologs of "second-hit" genes in Drosophila melanogaster and Xenopus laevis. We observed that knockdown of 16p12.1 homologs affect multiple phenotypic domains, leading to delayed developmental timing, seizure susceptibility, brain alterations, abnormal dendrite and axonal morphology, and cellular proliferation defects. Compared to genes within the 16p11.2 deletion, which has higher de novo occurrence, 16p12.1 homologs were less likely to interact with each other in Drosophila models or a human brain-specific interaction network, suggesting that interactions with "second-hit" genes may confer higher impact towards neurodevelopmental phenotypes. Assessment of 212 pairwise interactions in Drosophila between 16p12.1 homologs and 76 homologs of patient-specific "second-hit" genes (such as ARID1B and CACNA1A), genes within neurodevelopmental pathways (such as PTEN and UBE3A), and transcriptomic targets (such as DSCAM and TRRAP) identified genetic interactions in 63% of the tested pairs. In 11 out of 15 families, patient-specific "second-hits" enhanced or suppressed the phenotypic effects of one or many 16p12.1 homologs in 32/96 pairwise combinations tested. In fact, homologs of SETD5 synergistically interacted with homologs of MOSMO in both Drosophila and X. laevis, leading to modified cellular and brain phenotypes, as well as axon outgrowth defects that were not observed with knockdown of either individual homolog. Our results suggest that several 16p12.1 genes sensitize the genome towards neurodevelopmental defects, and complex interactions with "second-hit" genes determine the ultimate phenotypic manifestation.


Assuntos
Encéfalo/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/patologia , Canais de Cálcio/genética , Moléculas de Adesão Celular/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epistasia Genética/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Metiltransferases/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
4.
PLoS Genet ; 16(2): e1008590, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053595

RESUMO

The 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development.


Assuntos
Encéfalo/embriologia , Cromossomos Humanos Par 3/genética , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Deficiência Intelectual/genética , Complexo Proteico Nuclear de Ligação ao Cap/genética , Proteínas de Xenopus/genética , Animais , Apoptose/genética , Encéfalo/patologia , Ciclo Celular/genética , Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Deficiência Intelectual/patologia , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
5.
J Cell Sci ; 132(9)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30890650

RESUMO

It has long been established that neuronal growth cone navigation depends on changes in microtubule (MT) and F-actin architecture downstream of guidance cues. However, the mechanisms by which MTs and F-actin are dually coordinated remain a fundamentally unresolved question. Here, we report that the well-characterized MT polymerase, XMAP215 (also known as CKAP5), plays an important role in mediating MT-F-actin interaction within the growth cone. We demonstrate that XMAP215 regulates MT-F-actin alignment through its N-terminal TOG 1-5 domains. Additionally, we show that XMAP215 directly binds to F-actin in vitro and co-localizes with F-actin in the growth cone periphery. We also find that XMAP215 is required for regulation of growth cone morphology and response to the guidance cue, Ephrin A5. Our findings provide the first strong evidence that XMAP215 coordinates MT and F-actin interaction in vivo We suggest a model in which XMAP215 regulates MT extension along F-actin bundles into the growth cone periphery and that these interactions may be important to control cytoskeletal dynamics downstream of guidance cues. This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Cones de Crescimento/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Orientação de Axônios/efeitos dos fármacos , Efrina-A5/farmacologia , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
6.
Nat Rev Mol Cell Biol ; 10(5): 332-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19373241

RESUMO

The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.


Assuntos
Cones de Crescimento/fisiologia , Actinas/metabolismo , Animais , Citoesqueleto/metabolismo , Cones de Crescimento/metabolismo , Humanos , Microtúbulos/metabolismo , Ligação Proteica
7.
Dev Dyn ; 248(4): 296-305, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30682232

RESUMO

BACKGROUND: The mammalian guanine deaminase (GDA), called cypin, is important for proper neural development, by regulating dendritic arborization through modulation of microtubule (MT) dynamics. Additionally, cypin can promote MT assembly in vitro. However, it has never been tested whether cypin (or other GDA orthologs) binds to MTs or modulates MT dynamics. Here, we address these questions and characterize Xenopus laevis GDA (Gda) for the first time during embryonic development. RESULTS: We find that exogenously expressed human cypin and Gda both display a cytosolic distribution in primary embryonic cells. Furthermore, while expression of human cypin can promote MT polymerization, Xenopus Gda has no effect. Additionally, we find that the tubulin-binding collapsin response mediator protein (CRMP) homology domain is only partially conserved between cypin and Gda. This likely explains the divergence in function, as we discovered that the cypin region containing the CRMP homology and PDZ-binding domain is necessary for regulating MT dynamics. Finally, we observed that gda is strongly expressed in the kidneys during late embryonic development, although it does not appear to be critical for kidney development. CONCLUSIONS: Together, these results suggest that GDA has diverged in function between mammals and amphibians, and that mammalian GDA plays an indirect role in regulating MT dynamics. Developmental Dynamics 248:296-305, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Guanina Desaminase/fisiologia , Rim/enzimologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Embrião não Mamífero/enzimologia , Guanina Desaminase/metabolismo , Humanos , Rim/embriologia , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
8.
Semin Cell Dev Biol ; 51: 64-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26853934

RESUMO

The intricate and precise establishment of neuronal connections in the developing nervous system relies on accurate navigation of growing axons. Since Ramón y Cajal's discovery of the growth cone, the phenomenon of axon guidance has been revealed as a coordinated operation of guidance molecules, receptors, secondary messengers, and responses driven by the dynamic cytoskeleton within the growth cone. With the advent of new and accelerating techniques, Xenopus laevis emerged as a robust model to investigate neuronal circuit formation during development. We present here the advantages of the Xenopus nervous system to our growing understanding of axon guidance.


Assuntos
Orientação de Axônios , Cones de Crescimento/fisiologia , Animais , Células Cultivadas , Humanos , Microscopia de Fluorescência , Células Ganglionares da Retina/fisiologia , Medula Espinal/citologia , Imagem com Lapso de Tempo , Xenopus laevis
9.
Genesis ; 55(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095612

RESUMO

The model system, Xenopus laevis, has been used in innumerable research studies and has contributed to the understanding of multiple cytoskeletal components, including actin, microtubules, and neurofilaments, during axon pathfinding. Xenopus developmental stages have been widely characterized, and the Xenopus genome has been sequenced, allowing gene expression modifications through exogenous molecules. Xenopus cell cultures are ideal for long periods of live imaging because they are easily obtained and maintained, and they do not require special culture conditions. In addition, Xenopus have relatively large growth cones, compared to other vertebrates, thus providing a suitable system for imaging cytoskeletal components. Therefore, X. laevis is an ideal model organism in which to study cytoskeletal dynamics during axon pathfinding.


Assuntos
Orientação de Axônios/genética , Axônios/metabolismo , Citoesqueleto/genética , Xenopus laevis/genética , Actinas/metabolismo , Animais , Citoesqueleto/metabolismo , Cones de Crescimento/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Xenopus laevis/crescimento & desenvolvimento
10.
Dev Biol ; 420(1): 1-10, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27777068

RESUMO

Wolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes. This review summarizes literature that has made recent contributions to this topic, drawing from the vast body of knowledge detailing the genetic particularities of the disorder and the more limited pool of information on its cell biology. Finally, we propose a novel characterization for WHS as a pathophysiology owing in part to defects in neural crest cell motility and migration during development.


Assuntos
Movimento Celular , Crista Neural/patologia , Síndrome de Wolf-Hirschhorn/embriologia , Síndrome de Wolf-Hirschhorn/patologia , Animais , Epigênese Genética , Estudos de Associação Genética , Humanos , Crista Neural/metabolismo , Via de Sinalização Wnt , Síndrome de Wolf-Hirschhorn/genética
12.
Dev Biol ; 368(2): 312-22, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22683378

RESUMO

Formation of the vertebrate brain ventricles requires both production of cerebrospinal fluid (CSF), and its retention in the ventricles. The Na,K-ATPase is required for brain ventricle development, and we show here that this protein complex impacts three associated processes. The first requires both the alpha subunit (Atp1a1) and the regulatory subunit, Fxyd1, and leads to formation of a cohesive neuroepithelium, with continuous apical junctions. The second process leads to modulation of neuroepithelial permeability, and requires Atp1a1, which increases permeability with partial loss of function and decreases it with overexpression. In contrast, fxyd1 overexpression does not alter neuroepithelial permeability, suggesting that its activity is limited to neuroepithelium formation. RhoA regulates both neuroepithelium formation and permeability, downstream of the Na,K-ATPase. A third process, likely to be CSF production, is RhoA-independent, requiring Atp1a1, but not Fxyd1. Consistent with a role for Na,K-ATPase pump function, the inhibitor ouabain prevents neuroepithelium formation, while intracellular Na(+) increases after Atp1a1 and Fxyd1 loss of function. These data include the first reported role for Fxyd1 in the developing brain, and indicate that the Na,K-ATPase regulates three aspects of brain ventricle development essential for normal function: formation of a cohesive neuroepithelium, restriction of neuroepithelial permeability, and production of CSF.


Assuntos
Ventrículos Cerebrais/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Membrana/genética , Fosfoproteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , Proteínas de Peixe-Zebra/genética , Animais , Permeabilidade da Membrana Celular , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/embriologia , Líquido Cefalorraquidiano/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/metabolismo , Mutação , Células Neuroepiteliais/metabolismo , Ouabaína/farmacologia , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Cold Spring Harb Protoc ; 2022(5): Pdb.top105627, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34244350

RESUMO

Xenopus is an excellent vertebrate model system ideally suited for a wide range of imaging methods designed to investigate cell and developmental biology processes. The individual cells of Xenopus are much larger than those in many other vertebrate model systems, such that both cell behavior and subcellular processes can more easily be observed and resolved. Gene function in Xenopus can be manipulated and visualized using a variety of approaches, and the embryonic fate map is stereotypical, such that microinjections can target specific tissues and cell types during development. Tissues, organotypic explants, and individual cells can also be mounted in stable chambers and cultured easily in simple salt solutions without cumbersome environmental controls. Furthermore, Xenopus embryonic tissues can be microsurgically isolated and shaped to expose cell behaviors and protein dynamics in any regions of the embryo to high-resolution live-cell imaging. The combination of these attributes makes Xenopus a powerful system for understanding cell and developmental processes as well as disease mechanisms, through quantitative analysis of protein dynamics, cell movements, tissue morphogenesis, and regeneration. Here, we introduce various methods, of both fixed and living tissues, for visualizing Xenopus cells, embryos, and tadpoles. Specifically, we highlight protocol updates for whole-mount in situ hybridization and immunofluorescence, as well as robust live imaging approaches including methods for optimizing the time-lapse imaging of whole embryos and explants.


Assuntos
Embrião não Mamífero , Animais , Hibridização In Situ , Larva , Morfogênese , Coloração e Rotulagem , Xenopus laevis
14.
Front Genet ; 13: 833083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401697

RESUMO

Copy number variants (CNVs) associated with neurodevelopmental disorders are characterized by extensive phenotypic heterogeneity. In particular, one CNV was identified in a subset of children clinically diagnosed with intellectual disabilities (ID) that results in a hemizygous deletion of multiple genes at chromosome 16p12.1. In addition to ID, individuals with this deletion display a variety of symptoms including microcephaly, seizures, cardiac defects, and growth retardation. Moreover, patients also manifest severe craniofacial abnormalities, such as micrognathia, cartilage malformation of the ears and nose, and facial asymmetries; however, the function of the genes within the 16p12.1 region have not been studied in the context of vertebrate craniofacial development. The craniofacial tissues affected in patients with this deletion all derive from the same embryonic precursor, the cranial neural crest, leading to the hypothesis that one or more of the 16p12.1 genes may be involved in regulating neural crest cell (NCC)-related processes. To examine this, we characterized the developmental role of the 16p12.1-affected gene orthologs, polr3e, mosmo, uqcrc2, and cdr2, during craniofacial morphogenesis in the vertebrate model system, Xenopus laevis. While the currently-known cellular functions of these genes are diverse, we find that they share similar expression patterns along the neural tube, pharyngeal arches, and later craniofacial structures. As these genes show co-expression in the pharyngeal arches where NCCs reside, we sought to elucidate the effect of individual gene depletion on craniofacial development and NCC migration. We find that reduction of several 16p12.1 genes significantly disrupts craniofacial and cartilage formation, pharyngeal arch migration, as well as NCC specification and motility. Thus, we have determined that some of these genes play an essential role during vertebrate craniofacial patterning by regulating specific processes during NCC development, which may be an underlying mechanism contributing to the craniofacial defects associated with the 16p12.1 deletion.

15.
Bioessays ; 31(4): 446-58, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19274662

RESUMO

A unique feature of the vertebrate brain is the ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system.


Assuntos
Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/fisiologia , Ventrículos Cerebrais/anatomia & histologia , Ventrículos Cerebrais/citologia , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/fisiologia , Humanos , Modelos Biológicos , Neurogênese/fisiologia
16.
Cold Spring Harb Protoc ; 2021(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272974

RESUMO

The cytoskeleton is a dynamic, fundamental network that not only provides mechanical strength to maintain a cell's shape but also controls critical events like cell division, polarity, and movement. Thus, how the cytoskeleton is organized and dynamically regulated is critical to our understanding of countless processes. Live imaging of fluorophore-tagged cytoskeletal proteins allows us to monitor the dynamic nature of cytoskeleton components in embryonic cells. Here, we describe a protocol to monitor and analyze cytoskeletal dynamics in primary embryonic neuronal growth cones and neural crest cells obtained from Xenopus laevis embryos.


Assuntos
Citoesqueleto/metabolismo , Embrião não Mamífero/metabolismo , Cones de Crescimento/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Crista Neural/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Embrião não Mamífero/embriologia , Microtúbulos/metabolismo , Crista Neural/citologia , Crista Neural/embriologia , Neurônios/metabolismo , Xenopus laevis
18.
Cytoskeleton (Hoboken) ; 77(7): 277-291, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543081

RESUMO

Axon guidance is a critical process in forming the connections between a neuron and its target. The growth cone steers the growing axon toward the appropriate direction by integrating extracellular guidance cues and initiating intracellular signal transduction pathways downstream of these cues. The growth cone generates these responses by remodeling its cytoskeletal components. Regulation of microtubule dynamics within the growth cone is important for making guidance decisions. TACC3, as a microtubule plus-end binding (EB) protein, modulates microtubule dynamics during axon outgrowth and guidance. We have previously shown that Xenopus laevis embryos depleted of TACC3 displayed spinal cord axon guidance defects, while TACC3-overexpressing spinal neurons showed increased resistance to Slit2-induced growth cone collapse. Tyrosine kinases play an important role in relaying guidance signals to downstream targets during pathfinding events via inducing tyrosine phosphorylation. Here, in order to investigate the mechanism behind TACC3-mediated axon guidance, we examined whether tyrosine residues that are present in TACC3 have any role in regulating TACC3's interaction with microtubules or during axon outgrowth and guidance behaviors. We find that the phosphorylatable tyrosines within the TACC domain are important for the microtubule plus-end tracking behavior of TACC3. Moreover, TACC domain phosphorylation impacts axon outgrowth dynamics such as growth length and growth persistency. Together, our results suggest that tyrosine phosphorylation of TACC3 affects TACC3's microtubule plus-end tracking behavior as well as its ability to mediate axon growth dynamics in cultured embryonic neural tube explants.


Assuntos
Orientação de Axônios/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tirosina/metabolismo , Humanos , Fosforilação , Transdução de Sinais
19.
J Cell Biol ; 218(12): 3986-3997, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31699690

RESUMO

Abl family kinases are essential regulators of cell shape and movement. Genetic studies revealed functional interactions between Abl kinases and microtubules (MTs), but the mechanism by which Abl family kinases regulate MTs remains unclear. Here, we report that Abl2 directly binds to MTs and regulates MT behaviors. Abl2 uses its C-terminal half to bind MTs, an interaction mediated in part through electrostatic binding to tubulin C-terminal tails. Using purified proteins, we found that Abl2 binds growing MTs and promotes MT polymerization and stability. In cells, knockout of Abl2 significantly impairs MT growth, and this defect can be rescued via reexpression of Abl2. Stable reexpression of an Abl2 fragment containing the MT-binding domain alone was sufficient to restore MT growth at the cell edge. These results show Abl2 uses its C-terminal half to bind MTs and directly regulate MT dynamics.


Assuntos
Microtúbulos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Células 3T3 , Animais , Encéfalo/metabolismo , Células COS , Movimento Celular , Forma Celular , Chlorocebus aethiops , Citoesqueleto , Fibroblastos/metabolismo , Camundongos , Polimerização , Ligação Proteica , Domínios Proteicos , Eletricidade Estática , Suínos , Tubulina (Proteína)/metabolismo
20.
Front Physiol ; 10: 817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297068

RESUMO

Wolf-Hirschhorn syndrome (WHS) is a rare developmental disorder characterized by intellectual disability and various physical malformations including craniofacial, skeletal, and cardiac defects. These phenotypes, as they involve structures that are derived from the cranial neural crest, suggest that WHS may be associated with abnormalities in neural crest cell (NCC) migration. This syndrome is linked with assorted mutations on the short arm of chromosome 4, most notably the microdeletion of a critical genomic region containing several candidate genes. However, the function of these genes during embryonic development, as well as the cellular and molecular mechanisms underlying the disorder, are still unknown. The model organism Xenopus laevis offers a number of advantages for studying WHS. With the Xenopus genome sequenced, genetic manipulation strategies can be readily designed in order to alter the dosage of the WHS candidate genes. Moreover, a variety of assays are available for use in Xenopus to examine how manipulation of WHS genes leads to changes in the development of tissue and organ systems affected in WHS. In this review article, we highlight the benefits of using X. laevis as a model system for studying human genetic disorders of development, with a focus on WHS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA