Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Genet ; 22(6): 379-392, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33500558

RESUMO

Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.


Assuntos
Linhagem da Célula , Montagem e Desmontagem da Cromatina , Replicação do DNA , Epigênese Genética , Padrões de Herança , Nucleossomos/metabolismo , Humanos , Nucleossomos/genética , Pais
2.
EMBO J ; 40(12): e107192, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33934370

RESUMO

The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.


Assuntos
Fatores de Transcrição Forkhead/genética , Linfangiogênese , Vasos Linfáticos , Proteínas Repressoras/genética , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , Morfogênese , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Repressoras/metabolismo , Estresse Mecânico
3.
Nucleic Acids Res ; 50(4): 1875-1887, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35037039

RESUMO

Although there are several pathways to ensure that proteins are folded properly in the cell, little is known about the molecular mechanisms regulating histone folding and proteostasis. In this work, we identified that chaperone-mediated autophagy (CMA) is the main pathway involved in the degradation of newly synthesized histones H3 and H4. This degradation is finely regulated by the interplay between HSC70 and tNASP, two histone interacting proteins. tNASP stabilizes histone H3 levels by blocking the direct transport of histone H3 into lysosomes. We further demonstrate that CMA degrades unfolded histone H3. Thus, we reveal that CMA is the main degradation pathway involved in the quality control of histone biogenesis, evidencing an additional mechanism in the intricate network of histone cellular proteostasis.


Assuntos
Autofagia Mediada por Chaperonas , Histonas , Autofagia , Histonas/metabolismo , Lisossomos/metabolismo , Biossíntese de Proteínas
4.
Ann Hepatol ; 21: 100261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33007428

RESUMO

INTRODUCTION AND OBJECTIVES: About 250 million people around the world are chronically infected with the hepatitis B virus (HBV). Those people are at risk of developing hepatocellular carcinoma. The HBV genome is organized as a minichromosome in the infected hepatocyte and is associated with histones and non-histone proteins. In recent years, many groups have investigated the transcriptional regulation of HBV mediated by post-translational modifications on the histones associated with the covalently closed circular DNA (cccDNA). Our aim is to investigate the role of the histone variant H3.3. MATERIALS AND METHODS: An in vitro HBV replication model system based on the transfection of linear HBV genome monomeric molecules was used. We then either ectopically expressed or reduced the levels of H3.3, and of its histone chaperone HIRA. Viral intermediates were quantified and the level of H3K4me3 using Chromatin immunoprecipitation (ChIP) assay was measured. RESULTS: Histone variant H3.3 ectopically expressed in cells assembles into the viral cccDNA, correlating with increasing levels of the active histone mark H3K4me3 and HBV transcription. The opposite results were found upon diminishing H3.3 levels. Furthermore, the assembly of H3.3 into the cccDNA is dependent on the histone chaperone HIRA. Diminishing HIRA levels causes a reduction in the HBV intermediates. CONCLUSIONS: Histone variant H3.3 positively regulates HBV transcription. Importantly, the characterization of the viral chromatin dynamics might allow the discovery of new therapeutic targets to develop drugs for the treatment of chronically-infected HBV patients.


Assuntos
DNA Viral/genética , Epigênese Genética/genética , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/genética , Histonas/genética , Replicação Viral/genética , Células Cultivadas , DNA Circular/genética , Histonas/metabolismo , Humanos , Transcrição Gênica
5.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652602

RESUMO

Hepatitis B virus (HBV) is a circular, and partially double-stranded DNA virus. Upon infection, the viral genome is translocated into the cell nucleus, generating the covalently closed circular DNA (cccDNA) intermediate, and forming a mini chromosome. HBV HBx is a small protein displaying multiple roles in HBV-infected cells, and in different subcellular locations. In the nucleus, the HBx protein is required to initiate and maintain viral transcription from the viral mini chromosome. In contrast, HBx also functions in the cytoplasm, where it is able to alter multiple cellular functions such as mitochondria metabolism, apoptosis and signal transduction pathways. It has been reported that in cultured cells, at low expression levels, the HBx protein is localized in the nucleus, whereas at high expression levels, it accumulates in the cytoplasm. This dynamic subcellular distribution of HBx might be essential to exert its multiple roles during viral infection. However, the mechanism that regulates different subcellular localizations of the HBx protein is unknown. We have previously taken a bioinformatics approach to investigate whether HBx might be regulated via post-translational modification, and we have proposed that the multiple nucleocytoplasmic functions of HBx might be regulated by an evolutionarily conserved mechanism via phosphorylation. In the current study, phylogenetically conserved amino acids of HBx with a high potential of phosphorylation were targeted for site-directed mutagenesis. Two conserved serine (Ser25 and Ser41), and one conserved threonine (Thr81) amino acids were replaced by either alanine or aspartic acid residues to simulate an unphosphorylated or phosphorylated state, respectively. Human hepatoma cells were transfected with increasing amounts of the HBx DNA constructs, and the cells were analyzed by fluorescence microscopy. Together, our results show that the nucleocytoplasmic distribution of the HBx protein could be regulated by phosphorylation since some of the modified proteins were mainly confined to distinct subcellular compartments. Remarkably, both HBx Ser41A, and HBx Thr81D proteins were predominantly localized within the nuclear compartment throughout the different expression levels of HBx mutants.


Assuntos
Carcinoma Hepatocelular/genética , Hepatite B/genética , Neoplasias Hepáticas/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética , Sequência de Aminoácidos/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Sequência Conservada/genética , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Células Hep G2 , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Fosforilação/genética , Filogenia
6.
Virus Genes ; 55(2): 227-232, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30694421

RESUMO

Posttranslational modification (PTM) of proteins is critical to modulate protein function and to improve the functional diversity of polypeptides. In this report, we have analyzed the PTM of both hepatitis C virus NS3 and NS5B enzyme proteins, upon their individual expression in insect cells under the baculovirus expression system. Using mass spectrometry, we present evidence that these recombinant proteins exhibit diverse covalent modifications on certain amino acid side chains, such as phosphorylation, ubiquitination, and acetylation. Although the functional implications of these PTM must be further addressed, these data may prove useful toward the understanding of the complex regulation of these key viral enzymes and to uncover novel potential targets for antiviral design.


Assuntos
Hepacivirus/genética , Hepatite C/virologia , Proteínas não Estruturais Virais/genética , Regulação Viral da Expressão Gênica/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Humanos , Processamento de Proteína Pós-Traducional/genética
7.
Nucleic Acids Res ; 45(20): 11700-11710, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28977641

RESUMO

Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iß. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iß protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iß depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iß and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.


Assuntos
Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Western Blotting , Proteínas de Ligação a DNA , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/genética , Lisina/metabolismo , Espectrometria de Massas , Proteínas Nucleares , Ligação Proteica , Proteômica , Interferência de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição/genética
8.
Blood ; 126(15): 1785-9, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26333776

RESUMO

Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/ß-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that ß-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/ß-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia.


Assuntos
Aberrações Cromossômicas , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Translocação Genética/genética , Proteínas Wnt/genética , beta Catenina/genética , Células Cultivadas , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Imunofluorescência , Células-Tronco Hematopoéticas/citologia , Humanos , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Proteína 1 Parceira de Translocação de RUNX1 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição/genética
9.
Nucleic Acids Res ; 43(19): 9097-106, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26405197

RESUMO

Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Metilação , Proteínas Metiltransferases/metabolismo , Ribossomos/enzimologia
10.
J Autoimmun ; 75: 105-117, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27528513

RESUMO

As it has been established that demethylation of lysine 27 of histone H3 by the lysine-specific demethylase JMJD3 increases immune responses and thus elicits inflammation, we hypothesize that inhibition of JMJD3 may attenuate autoimmune disorders. We found that in vivo administration of GSK-J4, a selective inhibitor of JMJD3 and UTX, ameliorates the severity of experimental autoimmune encephalomyelitis (EAE). In vitro experiments revealed that the anti-inflammatory effect of GSK-J4 was exerted through an effect on dendritic cells (DCs), promoting a tolerogenic profile characterized by reduced expression of costimulatory molecules CD80/CD86, an increased expression of tolerogenic molecules CD103 and TGF-ß1, and reduced secretion of proinflammatory cytokines IL-6, IFN-γ, and TNF. Adoptive transfer of GSK-J4-treated DCs into EAE mice reduced the clinical manifestation of the disease and decreased the extent of inflammatory CD4+ T cells infiltrating the central nervous system. Notably, Treg generation, stability, and suppressive activity were all exacerbated by GSK-J4-treated DCs without affecting Th1 and Th17 cell production. Our data show that GSK-J4-mediated modulation of inflammation is achieved by a direct effect on DCs and that systemic treatment with GSK-J4 or adoptive transfer of GSK-J4-treated DCs ex vivo may be promising approaches for the treatment of inflammatory and autoimmune disorders.


Assuntos
Benzazepinas/farmacologia , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/prevenção & controle , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Pirimidinas/farmacologia , Transferência Adotiva , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Expressão Gênica/efeitos dos fármacos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Cadeias alfa de Integrinas/imunologia , Cadeias alfa de Integrinas/metabolismo , Histona Desmetilases com o Domínio Jumonji/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo
11.
Arch Virol ; 161(3): 583-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26620585

RESUMO

Genotype F is one of the less-studied genotypes of human hepatitis B virus, although it is widely distributed in regions of Central and South American. Our previous studies have shown that HBV genotype F is prevalent in Chile, and phylogenetic analysis of its full-length sequence amplified from the sera of chronically infected patients identified it as HBV subgenotype F1b. We have previously reported the full-length sequence of a HBV molecular clone obtained from a patient chronically infected with genotype F1b. In this report, we established a system to study HBV replication based on hepatoma cell lines transfected with full-length monomers of the HBV genome. Culture supernatants were analyzed after transfection and found to contain both HBsAg and HBeAg viral antigens. Consistently, fractionated cell extracts revealed the presence of viral replication, with both cytoplasmic and nuclear DNA intermediates. Analysis of HBV-transfected cells by indirect immunofluorescence or immunoelectron microscopy revealed the expression of viral antigens and cytoplasmic viral particles, respectively. To test the functionality of the ongoing viral replication further at the level of chromatinized cccDNA, transfected cells were treated with a histone deacetylase inhibitor, and this resulted in increased viral replication. This correlated with changes posttranslational modifications of histones at viral promoters. Thus, the development of this viral replication system for HBV genotype F will facilitate studies on the regulation of viral replication and the identification of new antiviral drugs.


Assuntos
Genótipo , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Replicação Viral , Fracionamento Celular , Linhagem Celular Tumoral , Meios de Cultura/química , DNA Viral/análise , Antígenos de Superfície da Hepatite B/análise , Antígenos E da Hepatite B/análise , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/virologia , Humanos , Microscopia de Fluorescência , Microscopia Imunoeletrônica
12.
Biochim Biophys Acta ; 1839(12): 1433-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24686120

RESUMO

In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to maintain genome integrity. Chromatin components, such as histone variants and histone post-translational modifications, along with the higher-order chromatin structure, impact several DNA metabolic processes, including replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating early steps in the replication process. We then discuss chromatin reassembly following replication fork passage, where the incorporation of a combination of newly synthesized histones and parental histones can impact the inheritance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine methylation can impact maintenance of the chromatin landscape, using heterochromatin as a model chromatin domain, and we discuss the potential mechanisms involved in this process.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Cromatina/genética , Humanos , Metilação
13.
Clin Dev Immunol ; 2013: 679804, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737814

RESUMO

Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4(+) T cells. The forkhead box P3 transcription factor (Foxp3) is a crucial molecule regulating the generation and function of Tregs. Here we show that the foxp3 gene promoter becomes hyperacetylated in in vitro differentiated Tregs compared to naïve CD4(+) T cells. We also show that the histone deacetylase inhibitor TSA stimulated the in vitro differentiation of naïve CD4(+) T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4(+)Foxp3(+) Treg cells.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Tolerância Imunológica , Linfócitos T Reguladores/efeitos dos fármacos , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Acetilação , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Apirase/genética , Apirase/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Histonas/genética , Histonas/imunologia , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
14.
Biomedicines ; 11(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37371770

RESUMO

Hepatitis B virus (HBV) is an enveloped DNA human virus belonging to the Hepadnaviridae family. Perhaps its main distinguishable characteristic is the replication of its genome through a reverse transcription process. The HBV circular genome encodes only four overlapping reading frames, encoding for the main canonical proteins named core, P, surface, and X (or HBx protein). However, pre- and post-transcriptional gene regulation diversifies the full HBV proteome into diverse isoform proteins. In line with this, hepatitis B virus X protein (HBx) is a viral multifunctional and regulatory protein of 16.5 kDa, whose canonical reading frame presents two phylogenetically conserved internal in-frame translational initiation codons, and which results as well in the expression of two divergent N-terminal smaller isoforms of 8.6 and 5.8 kDa, during translation. The canonical HBx, as well as the smaller isoform proteins, displays different roles during viral replication and subcellular localizations. In this article, we reviewed the different mechanisms of pre- and post-transcriptional regulation of protein expression that take place during viral replication. We also investigated all the past and recent evidence about HBV HBx gene regulation and its divergent N-terminal isoform proteins. Evidence has been collected for over 30 years. The accumulated evidence simply strengthens the concept of a new paradigm of the canonical HBx, and its smaller divergent N-terminal isoform proteins, not only during viral replication, but also throughout cell pathogenesis.

15.
Front Microbiol ; 14: 1271138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817747

RESUMO

Mobile genetic elements (MGEs) are relevant agents in bacterial adaptation and evolutionary diversification. Stable appropriation of these DNA elements depends on host factors, among which are the nucleoid-associated proteins (NAPs). NAPs are highly abundant proteins that bind and bend DNA, altering its topology and folding, thus affecting all known cellular DNA processes from replication to expression. Even though NAP coding genes are found in most prokaryotic genomes, their functions in host chromosome biology and xenogeneic silencing are only known for a few NAP families. Less is known about the occurrence, abundance, and roles of MGE-encoded NAPs in foreign elements establishment and mobility. In this study, we used a combination of comparative genomics and phylogenetic strategies to gain insights into the diversity, distribution, and functional roles of NAPs within the class Acidithiobacillia with a special focus on their role in MGE biology. Acidithiobacillia class members are aerobic, chemolithoautotrophic, acidophilic sulfur-oxidizers, encompassing substantial genotypic diversity attributable to MGEs. Our search for NAP protein families (PFs) in more than 90 genomes of the different species that conform the class, revealed the presence of 1,197 proteins pertaining to 12 different NAP families, with differential occurrence and conservation across species. Pangenome-level analysis revealed 6 core NAP PFs that were highly conserved across the class, some of which also existed as variant forms of scattered occurrence, in addition to NAPs of taxa-restricted distribution. Core NAPs identified are reckoned as essential based on the conservation of genomic context and phylogenetic signals. In turn, various highly diversified NAPs pertaining to the flexible gene complement of the class, were found to be encoded in known plasmids or, larger integrated MGEs or, present in genomic loci associated with MGE-hallmark genes, pointing to their role in the stabilization/maintenance of these elements in strains and species with larger genomes. Both core and flexible NAPs identified proved valuable as markers, the former accurately recapitulating the phylogeny of the class, and the later, as seed in the bioinformatic identification of novel episomal and integrated mobile elements.

16.
APL Bioeng ; 7(3): 031501, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37547671

RESUMO

Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.

17.
J Biol Chem ; 286(20): 17714-21, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454524

RESUMO

Much progress has been made concerning histone function in the nucleus; however, following their synthesis, how their marking and subcellular trafficking are regulated remains to be explored. To gain an insight into these issues, we focused on soluble histones and analyzed endogenous and tagged H3 histones in parallel. We distinguished six complexes that we could place to account for maturation events occurring on histones H3 and H4 from their synthesis onward. In each complex, a different set of chaperones is involved, and we found specific post-translational modifications. Interestingly, we revealed that histones H3 and H4 are transiently poly(ADP-ribosylated). The impact of these marks in histone metabolism proved to be important as we found that acetylation of lysines 5 and 12 on histone H4 stimulated its nuclear translocation. Furthermore, we showed that, depending on particular histone H3 modifications, the balance in the presence of the different translocation complexes changes. Therefore, our results enabled us to propose a regulatory means of these marks for controlling cytoplasmic/nuclear shuttling and the establishment of early modification patterns.


Assuntos
Núcleo Celular/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/genética , Células HeLa , Histonas/genética , Humanos
18.
Trends Biochem Sci ; 32(9): 425-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17764953

RESUMO

DNA in eukaryotic cells is compacted into chromatin, a regular repeated structure in which the nucleosome represents the basic unit. The nucleosome not only serves to compact the genetic material but also provides information that affects nuclear functions including DNA replication, repair and transcription. This information is conveyed through numerous combinations of histone post-translational modifications (PTMs) and histone variants. A recent challenge has been to understand how and when these combinations of PTMs are imposed and to what extent they are determined by the choice of a specific histone variant. Here we focus on histone H3 variants and the PTMs that they carry before and after their assembly into chromatin. We review and discuss recent knowledge about how the choice and initial modifications of a specific variant might affect PTM states and eventually the final epigenetic state of a chromosomal domain.


Assuntos
Cromatina/química , Epigênese Genética , Histonas/genética , Acetilação , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Metilação , Dados de Sequência Molecular , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos
19.
Int J Dent ; 2022: 7678891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547398

RESUMO

Objective: To perform a bibliometric analysis of the scientific research on the development of vaccines against dental caries. Methods: An extraction of the scientific production published on the development of vaccines against dental caries between 2011 and 2020 was carried out from the Scopus database. Microsoft Excel was used for the elaboration of tables and SciVal for the bibliometric analysis of the data, which were divided into indicators of production, impact, and collaboration. Finally, VOSviewer was used for co-occurrence analysis of keywords and collaborative networks. Results: 106 studies were retrieved from the Scopus database, which were conducted on the development of dental caries vaccines within the years 2011-2020. Wuhan University, in China, was the university with the highest scientific production on the subject, with 4 publications. Regarding the most productive journals, the first place was occupied by the Journal of Dental Research with 7 publications. Regarding the most productive journals, the first place was occupied by the Journal of Dental Research with 7 publications. The highest percentage of the documents analyzed was in quartile 1 journals and in the national collaboration pattern. Conclusion: Most of the manuscripts regarding the development of vaccines against dental caries were published in China and in Q1 quartile journals. In addition, Yan Huimin, Yang Jingyi, Zhou Dihan, Yang Yi, Li Yuhong and Fan Mingwen were found to top the list of most productive authors. The Journal of Dental Research was also identified as the most productive and cited journal.

20.
J Exp Med ; 219(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36121415

RESUMO

Small intestinal villi are structural and functional units present in higher vertebrates and uniquely adapted to nutrient absorption. Villus enterocytes are organized in transcriptional "zones" dedicated to specialized tasks such as absorption of specific nutrients. We report that the transcription factor c-MAF is expressed in differentiated lower and mid-villus enterocytes and is a target of BMP signaling. Maf inactivation perturbed the villus zonation program by increasing carbohydrate-related transcripts while suppressing transcripts linked to amino-acid and lipid absorption. The formation of cytoplasmic lipid droplets, shuttling dietary fat to chylomicrons, was impaired upon Maf loss indicating its role in dietary lipid handling. Maf inactivation under homeostatic conditions expanded tuft cells and led to compensatory gut lengthening, preventing weight loss. However, delayed Maf-/- enterocyte maturation impaired weight recovery after acute intestinal injury, resulting in reduced survival. Our results identify c-MAF as a regulator of the intestinal villus zonation program, while highlighting the importance of coordination between stem/progenitor and differentiation programs for intestinal regeneration.


Assuntos
Quilomícrons , Enterócitos , Animais , Carboidratos , Gorduras na Dieta , Nutrientes , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA