Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 140(4): 579-89, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20178749

RESUMO

Initially acquired memory dissipates rapidly if not consolidated. Such memory decay is thought to result either from the inherently labile nature of newly acquired memories or from interference by subsequently attained information. Here we report that a small G protein Rac-dependent forgetting mechanism contributes to both passive memory decay and interference-induced forgetting in Drosophila. Inhibition of Rac activity leads to slower decay of early memory, extending it from a few hours to more than one day, and to blockade of interference-induced forgetting. Conversely, elevated Rac activity in mushroom body neurons accelerates memory decay. This forgetting mechanism does not affect memory acquisition and is independent of Rutabaga adenylyl cyclase-mediated memory formation mechanisms. Endogenous Rac activation is evoked on different time scales during gradual memory loss in passive decay and during acute memory removal in reversal learning. We suggest that Rac's role in actin cytoskeleton remodeling may contribute to memory erasure.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia , Fatores de Despolimerização de Actina/genética , Animais , Memória/fisiologia , Transtornos da Memória , Corpos Pedunculados
2.
Hum Mol Genet ; 26(14): 2634-2648, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28472294

RESUMO

Although the genetic contribution is under debate, biological studies in multiple mouse models have suggested that the Disrupted-in-Schizophrenia-1 (DISC1) protein may contribute to susceptibility to psychiatric disorders. In the present study, we took the advantages of the Drosophila model to dissect the molecular pathways that can be affected by DISC1 in the context of pathology-related phenotypes. We found that three pathways that include the homologs of Drosophila Dys, Trio, and Shot were downregulated by introducing a C-terminal truncated mutant DISC1. Consistently, these three molecules were downregulated in the induced pluripotent stem cell-derived forebrain neurons from the subjects carrying a frameshift deletion in DISC1 C-terminus. Importantly, the three pathways were underscored in the pathophysiology of psychiatric disorders in bioinformatics analysis. Taken together, our findings are in line with the polygenic theory of psychiatric disorders.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação da Fase de Leitura , Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Herança Multifatorial , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Fenótipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Deleção de Sequência
3.
Proc Natl Acad Sci U S A ; 108(46): 18831-6, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22049342

RESUMO

The dysfunction of multiple neurotransmitter systems is a striking pathophysiological feature of many mental disorders, schizophrenia in particular, but delineating the underlying mechanisms has been challenging. Here we show that manipulation of a single schizophrenia susceptibility gene, dysbindin, is capable of regulating both glutamatergic and dopaminergic functions through two independent mechanisms, consequently leading to two categories of clinically relevant behavioral phenotypes. Dysbindin has been reported to affect glutamatergic and dopaminergic functions as well as a range of clinically relevant behaviors in vertebrates and invertebrates but has been thought to have a mainly neuronal origin. We find that reduced expression of Drosophila dysbindin (Ddysb) in presynaptic neurons significantly suppresses glutamatergic synaptic transmission and that this glutamatergic defect is responsible for impaired memory. However, only the reduced expression of Ddysb in glial cells is the cause of hyperdopaminergic activities that lead to abnormal locomotion and altered mating orientation. This effect is attributable to the altered expression of a dopamine metabolic enzyme, Ebony, in glial cells. Thus, Ddysb regulates glutamatergic transmission through its neuronal function and regulates dopamine metabolism by regulating Ebony expression in glial cells.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Dopamina/metabolismo , Proteínas de Drosophila/genética , Predisposição Genética para Doença , Glutamina/metabolismo , Esquizofrenia/genética , Animais , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster , Disbindina , Proteínas Associadas à Distrofina , Humanos , Modelos Biológicos , Mutação , Neurônios/metabolismo , Neurotransmissores/metabolismo , Distribuição Tecidual
4.
J Hematol Oncol ; 16(1): 62, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316891

RESUMO

BACKGROUND: The cytotoxicity of NK cells is largely dependent on IgG Fc receptor CD16a, which mediates antibody-dependent cell-mediated cytotoxicity (ADCC). The high-affinity and non-cleavable CD16 (hnCD16) is developed and demonstrated a multi-tumor killing potential. However, the hnCD16 receptor activates a single CD16 signal and provides limited tumor suppression. How to exploit the properties of hnCD16 and incorporate NK cell-specific activation domains is a promising development direction to further improve the anti-tumor activity of NK cells. METHODS: To expand the applications of hnCD16-mediated ADCC for NK cell-based immunotherapy in cancer, we designed the hnCD16 Fusion Receptor (FR) constructs with the ectodomain of hnCD16 fused with NK cell-specific activating domains in the cytoplasm. FR constructs were transduced into CD16-negative NK cell line and human iPSC-derived NK (iNK) cells and effective FR constructs were screened. The up-regulation of immune activation- and cytokine-releasing-related pathways in FR-transduced NK cells was screened and validated by RNA sequencing and multiplex cytokines release assay, respectively. The tumor-killing efficiency was tested in vitro and in vivo via co-culture with tumor cell lines and xenograft mice-bearing human B-cell lymphoma, respectively. RESULTS: We screened the most effective combination to kill B cell lymphoma, which was fused with the ectodomain of hnCD16a, NK-specific co-stimulators (2B4 and DAP10) and CD3ζ in cytoplasmic domains. The screened construct showed excellent cytotoxicity effects and sharp multiple cytokines releasing both in the NK cell line and iNK cells. The transcriptomic analysis and validation assays of hnCD16- and hnCD16FR-transduced NK cells showed that hnCD16FR transduction remodeled immune-related transcriptome in NK cells, where significant upregulation of genes related to cytotoxicity, high cytokines releasing, induced tumor cell apoptosis, and ADCC in comparison with hnCD16 transduction were highlighted. In vivo xenograft studies demonstrated that a single low-dose regimen of engineered hnCD16FR iPSC-derived NK cells co-administered with anti-CD20 mAb treatment mediated potent activity and significantly improved survival. CONCLUSION: We developed a novel hnCD16FR construct that exhibits more potent cytotoxicity than reported hnCD16, which is a promising approach to treat malignancies with improved ADCC properties. We also offer a rationale for NK activation domains that remodel immune response to enhance CD16 signaling in NK cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Imunoterapia , Células Matadoras Naturais , Ativação Linfocitária , Linhagem Celular Tumoral , Citocinas
5.
Sci China Life Sci ; 57(1): 46-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24399135

RESUMO

The Drosophila homolog of schizophrenia susceptibility gene dysbindin (Ddysb) affects a range of behaviors through regulation of multiple neurotransmitter signals, including dopamine activity. To gain insights into mechanisms underlying Ddysb-dependent regulation of dopamine signal, we investigated interaction between Ddysb and Ebony, the Drosophila ß-alanyl-monoamine synthase involved in dopamine recycling. We found that Ddysb was capable of regulating expression of Ebony in a bi-directional manner and its subcellular distribution. Such regulation is confined to glial cells. The expression level of ebony and its accumulation in glial soma depend positively on Ddysb activity, whereas its distribution in glial processes is bound to be reduced in response to any alterations of Ddysb from the normal control level, either an increase or decrease. An optimal binding ratio between Dysb and Ebony might contribute to such non-linear effects. Thus, Ddysb-dependent regulation of Ebony could be one of the mechanisms that mediate dopamine signal.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Predisposição Genética para Doença , Esquizofrenia/genética , Animais , Drosophila , Disbindina , Proteínas Associadas à Distrofina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA