Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Chem ; 405(3): 167-176, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37768929

RESUMO

Patients with acute myocardial infarction complicated with diabetes are more likely to develop myocardial ischemia/reperfusion (I/R) injury (MI/RI) during reperfusion therapy. Both HMGB1 and RAGE play important roles in MI/RI. However, the specific mechanisms of HMGB1 associated with RAGE are not fully clarified in diabetic MI/RI. This study aimed to investigate whether the HMGB1-RAGE axis induces diabetic MI/RI via regulating autophagy and apoptosis. A db/db mouse model of MI/RI was established, where anti-HMGB1 antibody and RAGE inhibitor (FPS-ZM1) were respectively injected after 10 min of reperfusion. The results showed that treatment with anti-HMGB1 significantly reduced the infarct size, serum LDH, and CK-MB level. Similar situations also occurred in mice administrated with FPS-ZM1, though the HMGB1 level was unchanged. Then, we found that treatment with anti-HMGB1 or FPS-ZM1 performed the same effects in suppressing the autophagy and apoptosis, as reflected by the results of lower LAMP2 and LC3B levels, increased Bcl-2 level, reduced BAX and caspase-3 levels. Moreover, the Pink1/Parkin levels were also inhibited at the same time. Collectively, this study indicates that the HMGB1-RAGE axis aggravated diabetic MI/RI via apoptosis and Pink1/Parkin mediated autophagy pathways, and inhibition of HMGB1 or RAGE contributes to alleviating those adverse situations.


Assuntos
Benzamidas , Diabetes Mellitus Experimental , Proteína HMGB1 , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Apoptose , Autofagia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Proteína HMGB1/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867293

RESUMO

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Assuntos
Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Proteína Quinase C beta , Transdução de Sinais , Animais , Proteína Quinase C beta/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Macrófagos/metabolismo , Macrófagos/enzimologia , Masculino , Interleucina-10/metabolismo , Interleucina-10/genética , Camundongos , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Células Cultivadas , Fenótipo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ativação de Macrófagos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Função Ventricular Esquerda , Fosforilação
3.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610247

RESUMO

This paper introduces a model-free optimization method based on reinforcement learning (RL) aimed at resolving the issues of active power and frequency oscillations present in a traditional virtual synchronous generator (VSG). The RL agent utilizes the active power and frequency response of the VSG as state information inputs and generates actions to adjust the virtual inertia and damping coefficients for an optimal response. Distinctively, this study incorporates a setting-time term into the reward function design, alongside power and frequency deviations, to avoid prolonged system transients due to over-optimization. The soft actor critic (SAC) algorithm is utilized to determine the optimal strategy. SAC, being model-free with fast convergence, avoids policy overestimation bias, thus achieving superior convergence results. Finally, the proposed method is validated through MATLAB/Simulink simulation. Compared to other approaches, this method more effectively suppresses oscillations in active power and frequency and significantly reduces the setting time.

4.
Biol Chem ; 404(6): 619-631, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36780323

RESUMO

MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p's role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p's pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.


Assuntos
MicroRNAs , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , MicroRNAs/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismo por Reperfusão/metabolismo
5.
Opt Express ; 29(19): 30155-30167, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614744

RESUMO

We present a new design of a robust cavity-enhanced frequency comb-based spectrometer operating under the continuous-filtering Vernier principle. The spectrometer is based on a compact femtosecond Er-doped fiber laser, a medium finesse cavity, a diffraction grating, a custom-made moving aperture, and two photodetectors. The new design removes the requirement for high-bandwidth active stabilization present in the previous implementations of the technique, and allows scan rates up to 100 Hz. We demonstrate the spectrometer performance over a wide spectral range by detecting CO2 around 1575 nm (1.7 THz bandwidth and 6 GHz resolution) and CH4 around 1650 nm (2.7 THz bandwidth and 13 GHz resolution). We achieve absorption sensitivity of 5 × 10-9 cm-1 Hz-1/2 at 1575 nm, and 1 × 10-7 cm-1 Hz-1/2 cm-1 at 1650 nm. We discuss the influence of the scanning speed above the adiabatic limit on the amplitude of the absorption signal.

6.
Drug Metab Dispos ; 48(1): 41-51, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699808

RESUMO

Atipamezole, an α 2-adrenoceptor antagonist, displayed nonlinear pharmacokinetics (PK) in rats. The aim of this study was to understand the underlying mechanisms of nonlinear PK in rats and linear PK in humans and develop physiologically based PK models (PBPK) to capture and validate this phenomenon. In vitro and in vivo data were generated to show that metabolism is the main clearance pathway of atipamezole and species differences exist. Where cytochrome P450 (P450) was responsible for the metabolism in rats with a low Michaelis constant, human-specific UDP-glucuronosyltransferase 2B10- and 1A4-mediated N-glucuronidation was identified as the leading contributor to metabolism in humans with a high V max capacity. Saturation of metabolism was observed in rats at pharmacologically relevant doses, but not in humans at clinically relevant doses. PBPK models were developed using GastroPlus software to predict the PK profile of atipamezole in rats after intravenous or intramuscular administration of 0.1 to 3 mg/kg doses. The model predicted the nonlinear PK of atipamezole in rats and predicted observed exposures within 2-fold across dose levels. Under the same model structure, a human PBPK model was developed using human in vitro metabolism data. The PBPK model well described human concentration-time profiles at 10-100 mg doses showing dose-proportional increases in exposure. This study demonstrated that PBPK is a useful tool to predict human PK when interspecies extrapolation is not applicable. The nonlinear PK in rat and linear PK in human were characterized in vitro and allowed the prospective human PK via intramuscular dosing to be predicted at the preclinical stage. SIGNIFICANCE STATEMENT: This study demonstrated that PBPK is a useful tool for predicting human PK when interspecies extrapolation is not applicable due to species unique metabolism. Atipamezole, for example, is metabolized by P450 in rats and by N-glucuronidation in humans that were hypothesized to be the underlying reasons for a nonlinear PK in rats and linear PK in humans. This was testified by PBPK simulation in this study.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacocinética , Imidazóis/farmacocinética , Modelos Biológicos , Antagonistas de Receptores Adrenérgicos alfa 2/sangue , Animais , Biotransformação , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Humanos , Imidazóis/sangue , Técnicas In Vitro , Fígado/enzimologia , Fígado/metabolismo , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos , Especificidade da Espécie , Distribuição Tecidual
7.
Drug Metab Dispos ; 48(3): 217-229, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911485

RESUMO

Alisertib (MLN8237) is an investigational, orally available, selective aurora A kinase inhibitor in clinical development for the treatment of solid tumors and hematologic malignancies. This metabolic profiling analysis was conducted as part of a broader phase 1 study evaluating mass balance, pharmacokinetics, metabolism, and routes of excretion of alisertib following a single 35-mg dose of [14C]alisertib oral solution (∼80 µCi) in three patients with advanced malignancies. On average, 87.8% and 2.7% of the administered dose was recovered in feces and urine, respectively, for a total recovery of 90.5% by 14 days postdose. Unchanged [14C]alisertib was the predominant drug-related component in plasma, followed by O-desmethyl alisertib (M2), and alisertib acyl glucuronide (M1), which were present at 47.8%, 34.6%, and 12.0% of total plasma radioactivity. In urine, of the 2.7% of the dose excreted, unchanged [14C]alisertib was a negligible component (trace), with M1 (0.84% of dose) and glucuronide conjugate of hydroxy alisertib (M9; 0.66% of dose) representing the primary drug-related components in urine. Hydroxy alisertib (M3; 20.8% of the dose administered) and unchanged [14C]alisertib (26.3% of the dose administered) were the major drug-related components in feces. In vitro, oxidative metabolism of alisertib was primarily mediated by CYP3A. The acyl glucuronidation of alisertib was primarily mediated by uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A3, and 1A8 and was stable in 0.1 M phosphate buffer and in plasma and urine. Further in vitro evaluation of alisertib and its metabolites M1 and M2 for cytochrome P450-based drug-drug interaction (DDI) showed minimal potential for perpetrating DDI with coadministered drugs. Overall, renal elimination played an insignificant role in the disposition of alisertib, and metabolites resulting from phase 1 oxidative pathways contributed to >58% of the alisertib dose recovered in urine and feces over 192 hours postdose. SIGNIFICANCE STATEMENT: This study describes the primary clearance pathways of alisertib and illustrates the value of timely conduct of human absorption, distribution, metabolism, and excretion studies in providing guidance to the clinical pharmacology development program for oncology drugs, for which a careful understanding of sources of exposure variability is crucial to inform risk management for drug-drug interactions given the generally limited therapeutic window for anticancer drugs and polypharmacy that is common in cancer patients.


Assuntos
Aurora Quinase A/metabolismo , Azepinas/metabolismo , Biotransformação/fisiologia , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Administração Oral , Idoso , Antineoplásicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fezes , Feminino , Glucuronídeos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
8.
Regul Toxicol Pharmacol ; 110: 104524, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31734179

RESUMO

Regulatory Guidance documents ICH Q3A (R2) and ICH Q3B (R2) state that "impurities that are also significant metabolites present in animal and/or human studies are generally considered qualified". However, no guidance is provided regarding data requirements for qualification, nor is a definition of the term "significant metabolite" provided. An opportunity is provided to define those categories and potentially avoid separate toxicity studies to qualify impurities. This can reduce cost, animal use and time, and avoid delays in drug development progression. If the concentration or amount of a metabolite, in animals or human, is similar to that of the known, structurally identical impurity (arising from the administered test material), the qualification of the impurity on the grounds of it also being a metabolite is justified. We propose two complementary approaches to support conclusions to this effect: 1) demonstrate that the impurity is formed by metabolism in animals and/or man, based preferably on plasma exposures or, alternatively, amounts excreted in urine, and, where appropriate, 2) show that animal exposure to (or amount of) the impurity/metabolite is equal or greater in animals than in humans. An important factor of both assessments is the maximum theoretical concentration (or amount) (MTC or MTA) of the impurity/metabolite achievable from the administered dose and recommendations on the estimation of the MTC and MTA are presented.


Assuntos
Contaminação de Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação , Humanos , Testes de Toxicidade
9.
Biopharm Drug Dispos ; 41(1-2): 3-31, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31778578

RESUMO

Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs are major safety concerns in the clinic. Several drugs have been withdrawn from the market due to perpetrator or victim DDIs. Strategies have been developed to assess DDI risks early in drug discovery to reduce DDI liabilities. High-to-medium throughput assays are available to identify undesirable scaffolds and to guide structural modifications to minimize DDIs. Definitive methods are used at later stages of drug discovery and development to provide a more accurate measurement of DDI parameters and to enable clinical translations. Physiologically based pharmacokinetic modeling and simulations are powerful tools to accurately predict DDIs and to assess risks in the clinic. Although significant advances have been made over the years, many challenges remain for clinical DDI translations. This includes DDIs involving non-cytochrome P450 enzymes, transporters, enzyme-transporter interplay, indirect effects from biologics, and pharmacodynamic based DDI. This review focuses on methods that are used to assess hepatic DDIs caused by enzyme inhibition and induction.


Assuntos
Simulação por Computador , Descoberta de Drogas , Interações Medicamentosas , Modelos Biológicos , Animais , Humanos , Farmacocinética , Medição de Risco
10.
Opt Express ; 27(21): 29521-29533, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684212

RESUMO

We use broadband near-infrared continuous-filtering Vernier spectroscopy (CF-VS) for time-resolved detection of H2O and OH radical in a premixed CH4/air flat flame. The CF-VS spectrometer is based on a femtosecond Er:fiber laser, an external cavity that contains the flame, and a detection system comprising a rotating diffraction grating and photodetectors. Spectra of H2O and OH radical around 1570 nm are continuously recorded with 6.6 GHz spectral resolution, 4.0 × 10-7 cm-1 absorption sensitivity, and 25 ms time resolution, while the fuel-air equivalence ratio is periodically modulated with a square wave. The concentrations of the two analytes are retrieved with percent level precision by a fit of a Vernier model to each spectrum spanning 13 nm. The temporal profiles of both concentrations in each modulation cycle are repeatable and the steady-state concentration levels are in good agreement with predictions based on one-dimensional simulations of a static flat flame. The robust CF-VS spectrometer opens up for quantitative monitoring of multiple products of time-varying combustion processes with relatively simple data acquisition procedures.

11.
Biomed Chromatogr ; 32(4)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29193233

RESUMO

A specific, sensitive and stable high-performance liquid chromatographic-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitative determination of methyl 3-amino-6-methoxythieno [2,3-b]quinoline-2-carboxylate (PU-48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU-48 was achieved with a reversed-phase C18 column (100 × 2.1 mm, 3 µm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple-quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU-48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass-to-charge ratio (m/z) 289.1 → 229.2 for PU-48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU-48 was linear over the concentration range of 0.1-1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU-48 in rats.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Cromatografia Líquida/métodos , Inibidores Enzimáticos/sangue , Proteínas de Membrana Transportadoras/metabolismo , Quinolinas/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Modelos Lineares , Masculino , Quinolinas/análise , Quinolinas/sangue , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transportadores de Ureia
12.
Drug Dev Ind Pharm ; 44(2): 329-337, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29113503

RESUMO

The objective of this study was to investigate the effect of crystalline state and a formulation of self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor, in rats. The crystalline states of W-1 were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The SNEDDS was formulated by medium-chain lipids, characterized by droplet particle size. The plasma concentrations of W-1 were measured by high performance liquid chromatography (HPLC). The results indicated that W-1 compound were presented as crystalline forms, A and B, the degree of crystallization in form B was higher than that in form A. The SNEDDS of W-1 displayed a significant increase in the dissolution rate than W-1 powder. Furthermore, after oral administration of W-1 (100 mg/kg), the pharmacokinetic parameters of form A, form B, and W-1 SNEDDS were as follows: AUC0-t 526.4 ± 123.5, 305.1 ± 58.5 and 2297 ± 451 ng h/mL (p < .05, when W-1 SNEDDS were compared with either form A or form B), respectively. With SNEDDS formulation, the relative bioavailabilities were enhanced by 4.36-fold and 7.53-fold over the form A and form B of W-1, respectively. In conclusion, the present results suggested that the crystalline states of W-1 might lead to the lower oral bioavailability, and SNEDDS formulation is a promising strategy of improving bioavailability, in spite of that crystalline states usually carry small lot-to-lot variability.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacocinética , Emulsões/química , Nanopartículas/química , Uracila/análogos & derivados , Administração Oral , Animais , Fármacos Anti-HIV/química , Área Sob a Curva , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalização , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Meia-Vida , Lipídeos/química , Masculino , Taxa de Depuração Metabólica , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Tensoativos/química , Uracila/administração & dosagem , Uracila/química , Uracila/farmacocinética , Difração de Raios X
13.
Pharmacogenet Genomics ; 27(4): 125-134, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28099407

RESUMO

BACKGROUND AND OBJECTIVES: Pioglitazone is a thiazolidinedione antihyperglycemic drug with insulin-sensitizing properties. We investigated whether the variant genotypes of cytochrome P450 2C8 (CYP2C8), CYP2C9, CYP3A5 and transporter ABCB1 influence the pharmacokinetic phenotype of the substrate pioglitazone in Chinese individuals. PARTICIPANTS AND METHODS: Single-nucleotide polymorphisms were determined by the PCR-restriction fragment length polymorphism method in 244 (CYP2C8 and CYP2C9) healthy Chinese Han individuals. After a single oral dose of 30 mg pioglitazone, the plasma concentrations of the parent drug and of two major active metabolites M-III and M-IV were measured using a validated LC-MS/MS in 21 (genotyping CYP3A5 and ABCB1) of these 244 volunteers. RESULTS: The results confirmed that the unique frequencies of CYP2C8*2 (0.0%), CYP2C8*3 (0.0%), and CYP2C9*2 (0.0%) alleles were significantly different from those reported in Whites and Africans, and there were only 10 variant CYP2C9*1/*3 heterozygous (CYP2C9*3 carriers) among 244 Chinese individuals. These results were similar to those reported in Asian ethnic populations, including the Chinese. Unexpectedly, the pioglitazone AUC0-48 in CYP2C9*3 carriers was lower (50.8%), whereas the AUC0-48 ratios of metabolites M-III/pioglitazone and M-IV/pioglitazone increased to 134.3 and 155.8%, respectively, compared with the wild-type CYP2C9*1/*1 homozygous. Moreover, this phenomenon was not observed in individuals with genetic variants of CYP3A5*3 and ABCB1 (C1236T). CONCLUSION: The present research suggests that the CYP2C8, CYP3A5, and ABCB1 genes play no significant role in the interindividual variation of pioglitazone pharmacokinetics, whereas CYP2C9*3 carriers are likely to accelerate the metabolism of this antidiabetic drug in the Chinese Han ethnic population.


Assuntos
Povo Asiático/genética , Redes Reguladoras de Genes , Hipoglicemiantes/administração & dosagem , Polimorfismo de Nucleotídeo Único , Tiazolidinedionas/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Administração Oral , Adulto , Povo Asiático/etnologia , China/etnologia , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Feminino , Genótipo , Humanos , Hipoglicemiantes/farmacocinética , Masculino , Variantes Farmacogenômicos , Pioglitazona , Tiazolidinedionas/farmacocinética , Adulto Jovem
14.
Xenobiotica ; 47(8): 667-672, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27910729

RESUMO

1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including Km, Vmax, and CLint were 2.3 µM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Microssomos Hepáticos/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Uracila/análogos & derivados , Animais , Humanos , Ratos , Uracila/metabolismo
15.
Drug Metab Dispos ; 44(8): 1399-423, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27052879

RESUMO

Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.


Assuntos
Descoberta de Drogas/normas , Indústria Farmacêutica/normas , Enzimas/metabolismo , Modelos Teóricos , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação , Simulação por Computador , Árvores de Decisões , Descoberta de Drogas/métodos , Interações Medicamentosas , Humanos , Cinética , Preparações Farmacêuticas/química , Medição de Risco , Especificidade da Espécie , Especificidade por Substrato
16.
Biomed Chromatogr ; 29(10): 1548-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25808138

RESUMO

A sensitive and selective high-performance liquid chromatographic (HPLC) method for determination of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor in rat plasma, was developed and validated. Chromatographic separation of W-1 and megestrol acetate (internal standard) was achieved on a reversed-phase C18 column at 25°C. The mobile phase was consisted of acetonitrile-water (60:40, v/v) and pumped at a flow rate of 1.0 mL/min. The ultraviolet (UV) detector was set at the absorption wavelength of 284 nm. The calibration curve for W-1 was linear over the concentration range of 0.01-8 µg/mL and the lower limit of quantification was 10 ng/mL. The intra- and inter-day precision and accuracy were <8.9 and 5.3%, respectively. The extraction recoveries ranged from 97.9 to 101.6%. The validated HPLC method was successfully applied to a pharmacokinetic study of W-1 in rats.


Assuntos
Inibidores da Transcriptase Reversa/farmacocinética , Uracila/análogos & derivados , Animais , Fármacos Anti-HIV/análise , Fármacos Anti-HIV/sangue , Fármacos Anti-HIV/farmacocinética , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Masculino , Acetato de Megestrol/análise , Ratos Sprague-Dawley , Inibidores da Transcriptase Reversa/análise , Inibidores da Transcriptase Reversa/sangue , Sensibilidade e Especificidade , Raios Ultravioleta , Uracila/análise , Uracila/farmacocinética
17.
Biopharm Drug Dispos ; 35(9): 543-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25264242

RESUMO

Orteronel is a nonsteroidal, selective inhibitor of 17,20-lyase that was recently in phase 3 clinical development as a treatment for castration-resistant prostate cancer. In humans, the primary clearance route for orteronel is renal excretion. Human liver microsomal studies indicated that orteronel weakly inhibits CYP1A2, 2C8, 2C9 and 2C19, with IC50 values of 17.8, 27.7, 30.8 and 38.8 µm, respectively, whereas orteronel does not inhibit CYP2B6, 2D6 or 3A4/5 (IC50 > 100 µm). Orteronel also does not exhibit time-dependent inhibition of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 or 3A4/5. The results of a static model indicated an [I]/Ki ratio >0.1 for CYP1A2, 2C8, 2C9 and 2C19. Therefore, a physiologically based pharmacokinetic (PBPK) model was developed to assess the potential for drug-drug interactions (DDIs) between orteronel and theophylline, repaglinide, (S)-warfarin and omeprazole, which are sensitive substrates of CYP1A2, 2C8, 2C9 and 2C19, respectively. Simulation of the area under the plasma concentration-time curve (AUC) of these four CYP substrates in the presence and absence of orteronel revealed geometric mean AUC ratios <1.25. Therefore, in accordance with the 2012 US FDA Draft Guidance on DDIs, orteronel can be labeled a 'non-inhibitor' and further clinical DDI evaluation is not required. In PBPK models of moderate and severe renal impairment, the AUC of orteronel was predicted to increase by 52% and 83%, respectively. These results are in agreement with those of a clinical trial in which AUC increases of 38% and 87% were observed in patients with moderate and severe renal impairment, respectively.


Assuntos
Antineoplásicos/farmacocinética , Simulação por Computador , Sistema Enzimático do Citocromo P-450/metabolismo , Imidazóis/farmacocinética , Modelos Biológicos , Naftalenos/farmacocinética , Insuficiência Renal/metabolismo , Absorção Fisiológica , Idoso , Antineoplásicos/sangue , Antineoplásicos/química , Interações Medicamentosas , Humanos , Imidazóis/sangue , Imidazóis/química , Taxa de Depuração Metabólica , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Estrutura Molecular , Peso Molecular , Naftalenos/sangue , Naftalenos/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Valor Preditivo dos Testes , Insuficiência Renal/enzimologia , Especificidade por Substrato
18.
Biopharm Drug Dispos ; 35(5): 296-307, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24647883

RESUMO

YQA-14 is a novel and selective dopamine D3 receptor antagonist, with potential for the treatment of drug addiction. However, earlier compounds in its structural class tend to have poor oral bioavailability. The objectives of this study were to characterize the preclinical absorption, distribution, metabolism and excretion (ADME) properties and pharmacokinetics (PK) of YQA-14, then to simulate the clinical PK of YQA-14 using a physiologically based pharmacokinetics (PBPK) model to assess the likelihood of developing YQA-14 as a clinical candidate. For human PK prediction, PBPK models were first built in preclinical species, rats and dogs, for validation purposes. The model was then modified by input of human in vitro ADME data obtained from in vitro studies. The study data showed that YQA-14 is a basic lipophilic compound, with rapid absorption (Tmax ~ 1 h) in both rats and dogs. Liver microsomal clearances and in vivo clearances were moderate in rats and dogs consistent with the moderate bioavailability observed in both species. The PBPK models built for rats and dogs simulated the observed PK data well in both species. The PBPK model refined with human data predicted that YQA-14 would have a clearance of 8.0 ml/min/kg, a volume distribution of 1.7 l/kg and a bioavailability of 16.9%. These acceptable PK properties make YQA-14 an improved candidate for further research and development as a potential dopamine D3R antagonism for the treatment of drug addiction in the clinic.


Assuntos
Benzoxazóis/farmacocinética , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Piperazinas/farmacocinética , Receptores de Dopamina D3/antagonistas & inibidores , Animais , Disponibilidade Biológica , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Distribuição Tecidual
19.
Cell Biosci ; 14(1): 72, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840175

RESUMO

Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.

20.
Hortic Res ; 11(3): uhae005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38464476

RESUMO

Citric acid gives lemons their unique flavor, which impacts their sensory traits and market value. However, the intricate process of citric acid accumulation during lemon fruit growth remains incompletely understood. Here, we achieved a chromosomal-level genome assembly for the 'Xiangshui' lemon variety, spanning 364.85 Mb across nine chromosomes. This assembly revealed 27 945 genes and 51.37% repetitive sequences, tracing the divergence from citron 2.85 million years ago. DNA methylome analysis of lemon fruits across different developmental stages revealed significant variations in DNA methylation. We observed decreased CG and CHG methylation but increased CHH methylation. Notably, the expression of RdDM pathway-related genes increased with fruit development, suggesting a connection with elevated CHH methylation, which is potentially influenced by the canonical RdDM pathway. Furthermore, we observed that elevated CHH DNA methylation within promoters significantly influenced the expression of key genes, critically contributing to vital biological processes, such as citric acid accumulation. In particular, the pivotal gene phosphoenolpyruvate carboxykinase (ClPEPCK), which regulates the tricarboxylic acid cycle, was strikingly upregulated during fruit development, concomitant with increased CHH methylation in its promoter region. Other essential genes associated with citric acid accumulation, such as the MYB transcription factor (ClPH1/4/5) and ANTHOCYANIN 1 (ClAN1), were strongly correlated with DNA methylation levels. These results strongly indicate that DNA methylation crucially orchestrates the metabolic synthesis of citric acid. In conclusion, our study revealed dynamic changes in DNA methylation during lemon fruit development, underscoring the significant role of DNA methylation in controlling the citric acid metabolic pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA