Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Angew Chem Int Ed Engl ; 60(29): 16044-16050, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33960092

RESUMO

Precisely regulating the electronic structures of metal active species is highly desirable for electrocatalysis. However, carbon with inert surface provide weak metal-support interaction, which is insufficient to modulate the electronic structures of metal nanoparticles. Herein, we propose a new method to control the electrocatalytic behavior of supported metal nanoparticles by dispersing single metal atoms on an O-doped graphene. Ideal atomic metal species are firstly computationally screened. We then verify this concept by deposition of Ru nanoparticles onto an O-doped graphene decorated with single metal atoms (e.g., Fe, Co, and Ni) for hydrogen evolution reaction (HER). Consistent with theoretical predictions, such hybrid catalysts show outstanding HER performance, much superior to other reported electrocatalysts such as the state-of-the-art Pt/C. This work offers a new strategy for modulating the activity and stability of metal nanoparticles for electrocatalysis processes.

2.
Angew Chem Int Ed Engl ; 59(19): 7356-7361, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32084292

RESUMO

The electrochemical nitrogen reduction reaction (NRR) is a promising energy-efficient and low-emission alternative to the traditional Haber-Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18 O49 , which has exposed active W sites and weak binding for H2 , is doped with Fe. A high NH3 formation rate of 24.7 µg h-1 mgcat -1 and a high FE of 20.0 % are achieved at an overpotential of only -0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation-type doping of Fe atoms in the tunnels of the W18 O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.

3.
J Am Chem Soc ; 136(50): 17626-33, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25419613

RESUMO

Surfactant-free CuAgSe nanoparticles were successfully synthesized on a large scale within a short reaction time via a simple environmentally friendly aqueous approach under room temperature. The nanopowders obtained were consolidated into pellets for investigation of their thermoelectric properties between 3 and 623 K. The pellets show strong metallic characteristics below 60 K and turn into an n-type semiconductor with increasing temperature, accompanied by changes in the crystal structure (i.e., from the pure tetragonal phase into a mixture of tetragonal and orthorhombic phases), the electrical conductivity, the Seebeck coefficient, and the thermal conductivity, which leads to a figure of merit (ZT) of 0.42 at 323 K. The pellets show further interesting temperature-dependent transition from n-type into p-type in electrical conductivity arising from phase transition (i.e., from the mixture phases into cubic phase), evidenced by the change of the Seebeck coefficient from -28 µV/K into 226 µV/K at 467 K. The ZT value increased with increasing temperature after the phase transition and reached 0.9 at 623 K. The sintered CuAgSe pellets also display excellent stability, and there is no obvious change observed after 5 cycles of consecutive measurements. Our results demonstrate the potential of CuAgSe to simultaneously serve (at different temperatures) as both an n-type and a p-type thermoelectric material.

4.
Nat Commun ; 15(1): 1672, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395923

RESUMO

The practical applications of solar-driven water splitting pivot on significant advances that enable scalable production of robust photoactive films. Here, we propose a proof-of-concept for fabricating robust photoactive films by a particle-implanting technique (PiP) which embeds semiconductor photoabsorbers in the liquid metal. The strong semiconductor/metal interaction enables resulting films efficient collection of photogenerated charges and superior photoactivity. A photoanode of liquid-metal embraced BiVO4 can stably operate over 120 h and retain ~ 70% of activity when scaled from 1 to 64 cm2. Furthermore, a Z-scheme photocatalyst film of liquid-metal embraced BiVO4 and Rh-doped SrTiO3 particles can drive overall water splitting under visible light, delivering an activity 2.9 times higher than that of the control film with gold support and a 110 h stability. These results demonstrate the advantages of the PiP technique in constructing robust and efficient photoactive films for artificial photosynthesis.

5.
Phys Chem Chem Phys ; 14(24): 8703-10, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22618882

RESUMO

A microporous-mesoporous carbon with graphitic structure was developed as a matrix for the sulfur cathode of a Li-S cell using a mixed carbonate electrolyte. Sulfur was selectively introduced into the carbon micropores by a melt adsorption-solvent extraction strategy. The micropores act as solvent-restricted reactors for sulfur lithiation that promise long cycle stability. The mesopores remain unfilled and provide an ion migration pathway, while the graphitic structure contributes significantly to low-resistance electron transfer. The selective distribution of sulfur in micropores was characterized by X-ray photoelectron spectroscopy (XPS), nitrogen cryosorption analysis, transmission electron microscopy (TEM), X-ray powder diffraction and Raman spectroscopy. The high-rate stable lithiation-delithiation of the carbon-sulfur cathode was evaluated using galvanostatic charge-discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode is able to operate reversibly over 800 cycles with a 1.8 C discharge-recharge rate. This integration of a micropore reactor, a mesopore ion reservoir, and a graphitic electron conductor represents a generalized strategy to be adopted in research on advanced sulfur cathodes.

6.
J Am Chem Soc ; 133(4): 695-7, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21182326

RESUMO

Self-assembly of exfoliated monolayer titania sheets is investigated by detailed transmission electron microscopy and the force field calculations. It is demonstrated for the first time that slight but significant lattice distortions result in modified angular self-assembly of exfoliated monolayer Ti(0.87)O(2) sheets. These findings significantly broaden current knowledge of the self-assembly of exfoliated nanoscale layered sheets, which may render the potential manipulation of self-assembly of nanosheets.

7.
J Am Chem Soc ; 133(50): 20116-9, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22082332

RESUMO

Based on theoretical prediction, a g-C(3)N(4)@carbon metal-free oxygen reduction reaction (ORR) electrocatalyst was designed and synthesized by uniform incorporation of g-C(3)N(4) into a mesoporous carbon to enhance the electron transfer efficiency of g-C(3)N(4). The resulting g-C(3)N(4)@carbon composite exhibited competitive catalytic activity (11.3 mA cm(-2) kinetic-limiting current density at -0.6 V) and superior methanol tolerance compared to a commercial Pt/C catalyst. Furthermore, it demonstrated significantly higher catalytic efficiency (nearly 100% of four-electron ORR process selectivity) than a Pt/C catalyst. The proposed synthesis route is facile and low-cost, providing a feasible method for the development of highly efficient electrocatalysts.

8.
Small ; 7(4): 425-43, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21246712

RESUMO

Magnetic nanocomposites with well-defined mesoporous structures, shapes, and tailored properties are of immense scientific and technological interest. This review article is devoted to the progress in the synthesis and applications of magnetic mesoporous materials. The first part briefly reviews various general methods developed for producing magnetic nanoparticles (NPs). The second presents and categorizes the synthesis of magnetic nanocomposites with mesoporous structures. These nanocomposites are broadly categorized into four types: monodisperse magnetic nanocrystals embedded in mesoporous nanospheres, microspheres encapsulating magnetic cores into perpendicularly aligned mesoporous shells, ordered mesoporous materials loaded with magnetic NPs inside the porous channels or cages, and rattle-type magnetic nanocomposites. The third section reviews the potential applications of the magnetic nanocomposites with mesoporous structures in the areas of heath care, catalysis, and environmental separation. The final section offers a summary and future perspectives on the state-of-the art in this area.


Assuntos
Magnetismo , Nanocompostos/química , Nanotecnologia/métodos , Porosidade
9.
Chem Rev ; 114(19): 9559-612, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24851995
10.
Adv Sci (Weinh) ; 8(7): 2001987, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854873

RESUMO

Janus structures that include different functional compartments have attracted significant attention due to their specific properties in a diverse range of applications. However, it remains challenge to develop an effective strategy for achieving strong interfacial interaction. Herein, a Janus nanoreactor consisting of TiO2 2D nanocrystals integrated with Prussian blue analog (PBA) single crystals is proposed and synthesized by mimicking the planting process. In situ etching of PBA particles induces nucleation and growth of TiO2 nanoflakes onto the concave surface of PBA particles, and thus enhances the interlayer interaction. The anisotropic PBA-TiO2 Janus nanoreactor demonstrates enhanced photocatalytic activities for both water reduction and oxidation reactions compared with TiO2 and PBA alone. As far as it is known, this is the first PBA-based composite that serves as a bifunctional photocatalyst for solar water splitting. The interfacial structure between two materials is vital for charge separation and transfer based on the spectroscopic studies. These results shed light on the elaborate construction of Janus nanoreactor, highlighting the important role of interfacial design at the microscale level.

11.
J Am Chem Soc ; 132(33): 11642-8, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20681594

RESUMO

Electronic structure intrinsically controls the light absorbance, redox potential, charge-carrier mobility, and consequently, photoreactivity of semiconductor photocatalysts. The conventional approach of modifying the electronic structure of a semiconductor photocatalyst for a wider absorption range by anion doping operates at the cost of reduced redox potentials and/or charge-carrier mobility, so that its photoreactivity is usually limited and some important reactions may not occur at all. Here, we report sulfur-doped graphitic C(3)N(4) (C(3)N(4-x)S(x)) with a unique electronic structure that displays an increased valence bandwidth in combination with an elevated conduction band minimum and a slightly reduced absorbance. The C(3)N(4-x)S(x) shows a photoreactivity of H(2) evolution 7.2 and 8.0 times higher than C(3)N(4) under lambda > 300 and 420 nm, respectively. More strikingly, the complete oxidation process of phenol under lambda > 400 nm can occur for sulfur-doped C(3)N(4), which is impossible for C(3)N(4) even under lambda > 300 nm. The homogeneous substitution of sulfur for lattice nitrogen and a concomitant quantum confinement effect are identified as the cause of this unique electronic structure and, consequently, the excellent photoreactivity of C(3)N(4-x)S(x). The results acquired may shed light on general doping strategies for designing potentially efficient photocatalysts.

12.
Nanotechnology ; 21(37): 375701, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20714054

RESUMO

Sulfur-doped gallium phosphide nanowires were synthesized in a high yield by a facile sublimation of ball-milled mixture powders in a confined reaction zone. The nanowires have diameters in the range of 50-200 nm and lengths up to tens of micrometers. They consist of single-crystalline zinc blende structure crystals with a (111) growth direction. Electron energy-loss spectroscopy reveals that the sulfur doping occurs in the uniform forms of the body. Amorphous Ga-O containing a self-catalyst growth mechanism is proposed based on the detailed characterizations. Photoluminescence shows strong visible emissions at room temperature, indicating their potential applications in light sources, laser or light emitting display devices.

13.
Nanotechnology ; 21(6): 065701, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20057025

RESUMO

Wurtzite structured zinc sulfide (ZnS) nanowire arrays are synthesized on silicon (111) wafers by a facile evaporation-condensation approach. These ZnS nanowire arrays possess predominant field emission properties with a low turn-on field of 2.9 V microm(-1), a low threshold field of 4.25 V microm(-1), a high field-enhancement factor (over 2700), and a high stability with a low fluctuation (approximately 0.8%). The improved field emission performance of these ZnS nanowire arrays is attributed to their specific crystallographic feature-array structures with nanotips and high single crystallinity. These results suggest that such ZnS nanowire arrays can be used as building blocks for field emitters.

14.
J Am Chem Soc ; 131(36): 12868-9, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19697930

RESUMO

We demonstrated a facile route for one-pot synthesis of visible light responsive nitrogen doped anatase TiO(2) sheets with dominant {001} facets from TiN. The synthesized anatase TiO(2) sheets show a strong and stable capability of generating photocatalysis active species of *OH radicals and hydrogen evolution from splitting water under visible light irradiation.

15.
J Am Chem Soc ; 131(47): 17354-9, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19929022

RESUMO

Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BN-based nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis.

16.
J Am Chem Soc ; 131(11): 4078-83, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19249825

RESUMO

Owing to wide-ranging industrial applications and fundamental importance, tailored synthesis of well-faceted single crystals of anatase TiO(2) with high percentage of reactive facets has attracted much research interest. In this work, high-quality anatase TiO(2) single-crystal nanosheets mainly dominated by {001} facets have been prepared by using a water-2-propanol solvothermal synthetic route. The synergistic functions of 2-propanol and HF on the growth of anatase TiO(2) single-crystal nanosheets were studied by first-principle theoretical calculations, revealing that the addition of 2-propanol can strengthen the stabilization effect associated with fluorine adsorption over (001) surface and thus stimulate its preferred growth. By measuring the (*)OH species with terephthalic acid scavenger, the as-prepared anatase TiO(2) single-crystal nanosheets having 64% {001} facets show superior photoreactivity (more than 5 times), compared to P25 as a benchmarking material.


Assuntos
Nanoestruturas/química , Titânio/química , Cristalização , Processos Fotoquímicos , Solventes , Temperatura
17.
Small ; 5(7): 854-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19226596

RESUMO

Nanometer-sized mesoporous silica particles of around 100-nm diameter functionalized with a large amount of sulfonic acid groups are prepared using a simple and fast in situ co-condensation procedure. A highly ordered hexagonal pore structure is established by applying a pre-hydrolysis step in a high-dilution synthesis approach, followed by adding the functionalization agent to the reaction mixture. The high-dilution approach is advantageous for the in situ functionalization since no secondary reagents for an effective particle and framework formation are needed. Structural data are determined via electron microscopy, nitrogen adsorption, and X-ray diffraction, proton conductivity values of the functionalized samples are measured via impedance spectroscopy. The obtained mesoporous SO(3)H-MCM-41 nanoparticles demonstrate superior proton conductivity than their equally loaded micrometer-sized counterparts, up to 5 x 10(-2) S cm(-1). The mesoporosity of the particles turns out to be very important for effective proton transport since non-porous silica nanoparticles exhibit worse efficient proton transport, and the obtained particle size dependence might open up a new route in rational design of highly proton conductive materials.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Condutividade Elétrica , Nanopartículas/ultraestrutura , Porosidade , Prótons , Difração de Raios X
18.
Small ; 5(3): 377-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19148887

RESUMO

The packing structures of macroporous ordered siliceous foams (MOSFs) are systematically investigated by using a 3D electron tomography technique and the nanostructural characteristics for layered MOSFs are resolved. MOSF materials adopt an ordered 2D hexagonal arrangement in single-layered areas, regular honeycomb patterns in double-layered samples, and polyhedric cells similar to a Weaire-Phelan structure in multilayered areas, all following the principle of minimizing surface area, which is well understood in soap foams at the macroscopic scale. In surfactant-templated materials, liquid-crystal templating is generally applied, but here it is revealed that the surface-area-minimization principle can also be applied, which facilitates the design and synthesis of novel macroporous materials using surfactant molecules as templates.


Assuntos
Tomografia com Microscopia Eletrônica , Nanoestruturas/química , Dióxido de Silício/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/química
19.
Chem Commun (Camb) ; (11): 1383-5, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19259595

RESUMO

Nitrogen-doped titania nanosheets with visible light response were synthesized by exfoliating a layered titanate with homogeneous nitrogen doping.


Assuntos
Amônia/química , Materiais Biocompatíveis/química , Luz , Nanoestruturas/química , Nitrogênio/química , Titânio/química , Microscopia de Força Atômica , Temperatura
20.
Adv Mater ; 30(21): e1705666, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29659100

RESUMO

Porous single crystals are promising candidates for solar fuel production owing to their long range charge diffusion length, structural coherence, and sufficient reactive sites. Here, a simple template-free method of growing a selectively branched, 2D anatase TiO2 porous single crystalline nanostructure (PSN) on fluorine-doped tin oxide substrate is demonstrated. An innovative ion exchange-induced pore-forming process is designed to successfully create high porosity in the single-crystalline nanostructure with retention of excellent charge mobility and no detriment to crystal structure. PSN TiO2 film delivers a photocurrent of 1.02 mA cm-2 at a very low potential of 0.4 V versus reversible hydrogen electrode (RHE) for photo-electrochemical water splitting, closing to the theoretical value of TiO2 (1.12 mA cm-2 ). Moreover, the current-potential curve featuring a small potential window from 0.1 to 0.4 V versus RHE under one-sun illumination has a near-ideal shape predicted by the Gartner Model, revealing that the charge separation and surface reaction on the PSN TiO2 photoanode are very efficient. The photo-electrochemical water splitting performance of the films indicates that the ion exchange-assisted synthesis strategy is effective in creating large surface area and single-crystalline porous photoelectrodes for efficient solar energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA