Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007174

RESUMO

Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.

2.
Angew Chem Int Ed Engl ; 53(17): 4399-403, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24677660

RESUMO

Abundant and toxic hydrogen sulfide (H2 S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2 S splitting reaction. Herein a photochemical-chemical loop linked by redox couples such as Fe(2+) /Fe(3+) and I(-) /I3 (-) for photoelectrochemical H2 production and H2 S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2 S was successfully split into elemental sulfur and H2 with high stability and selectivity under simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2 S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.

3.
J Am Chem Soc ; 135(22): 8246-53, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23678978

RESUMO

Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 10(13) cm(-2) of BN nanomaterials and can be easily realized experimentally.

4.
Phys Chem Chem Phys ; 15(29): 12314-21, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23778329

RESUMO

The development of technologically and economically viable strategies for large-scale fabrication of photoelectrodes is crucial for solar H2 production from photoelectrochemical water splitting. Herein, a low-cost and facile colloidal electrophoretic deposition approach was developed for scalable fabrication of hematite (α-Fe2O3) films. Large-sized uniform films (e.g. 80 mm × 70 mm) with tailored thickness and nanostructures can be easily prepared on conductive substrates within 2 minutes. The resultant films showed a high photocurrent of ∼1.1 mA cm(-2) at 1.23 V(RHE) under standard AM 1.5G illumination, which is among the highest reported values achieved on hematite films prepared using other complex colloidal approaches. The present work will pave a new avenue for fabrication of efficient photoelectrodes toward practically viable solar H2 production.

5.
J Am Chem Soc ; 134(46): 18920-3, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23126545

RESUMO

Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.


Assuntos
Bismuto/química , Temperatura Alta , Manganês/química , Nanoestruturas , Telúrio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Raios X
6.
Nanotechnology ; 18(3): 035708, 2007 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-19636139

RESUMO

The shape control of metal nanoparticles allows one to finely tune their properties with great versatility. A self-seeding coreduction method has recently been developed for the synthesis of silver nanodiscs, triangular nanoplates and nanospheres. The addition of surfactants was found to be one of the most important factors in determining the final particle shape. In this paper, molecular dynamics simulations are performed to understand the growth mechanisms of silver nanoparticles for different surfactants (i.e. bis(2-ethylhexyl) sulfosuccinate, 1-dodecanethiol and cetyltrimethyl ammonium). The interaction energies between the surfactants and the silver crystal plane (i.e. (100), (110), (111)) are calculated. The molecular structural property of surfactants at the silver surface is also examined. It is demonstrated that the calculated interaction energies explain well the growth behaviour observed in the silver nanoparticle systems. Molecular dynamics simulation could provide a theoretical guideline for the choice of surfactants and hence the synthesis of various metal nanoparticles with controlled shape.

7.
J Colloid Interface Sci ; 391: 70-3, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23123028

RESUMO

Anatase TiO(2) nanosheets with exposed reactive {001} facets were prepared in the presence of HF. The photovoltaic properties of NaOH-washed anatase TiO(2) nanosheets with exposed {001} facets were investigated by assembling the TiO(2) as photoanodes in dye-sensitized solar cells (DSSCs). A decreased overall efficiency and increased recombination rate was observed in comparison with the H(2)O-washed counterpart by both dark current scan and open-circuit voltage decay scan, and XPS confirmed that the deleterious effect of sodium ions is responsible for this reduced efficiency in DSSCs.

8.
Adv Mater ; 25(7): 998-1003, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23239109

RESUMO

A simple, yet versatile strategy to prepare size-controlled and monodisperse carbon sub-micrometer spheres is developed based on the biomolecule dopamine. Unlike traditional carbon materials, the resulting carbon sub-micrometer spheres contain much less sp(3) carbon with high-level electroactive nitrogen. Moreover, metal-carbon hybrid sub-micrometer spheres can be easily obtained, and show highly promising catalytic properties in the oxygen-reduction reaction.


Assuntos
Carbono/química , Metais/química , Amônia/química , Catálise , Dopamina/química , Dopamina/metabolismo , Nitrogênio/química , Oxirredução , Oxigênio/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA