Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(22): 9625-9632, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34730364

RESUMO

Designing a spectrometer without the need for wavelength multiplexing optics can effectively reduce the complexity and physical footprint. On the basis of the computational spectroscopic strategy and combining a broadband-responsive dynamic detector, we successfully demonstrate an optics-free single-detector spectrometer that maps the tunable quantum efficiency of a superconducting nanowire into a matrix to build a solvable mathematical equation. Such a spectrometer can realize a broadband spectral responsivity ranging from 660 to 1900 nm. The spectral resolution at the telecom is sub-10 nm, exceeding the energy resolving capacity of existing infrared single-photon detectors. Meanwhile, benefiting from the optics-free setup, precise time-of-flight measurements can be simultaneously achieved. We have demonstrated a spectral LiDAR with eight spectral channels. This spectrometer scheme paves the way for applying superconducting nanowire detectors in multifunctional spectroscopy and represents a conceptual advancement for on-chip spectroscopy and spectral imaging.

2.
Nano Lett ; 20(5): 3553-3559, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32286838

RESUMO

Many classic and quantum devices need to operate at cryogenic temperatures, demanding advanced cryogenic digital electronics for processing the input and output signals on a chip to extend their scalability and performance. Here, we report a superconducting binary encoder with ultralow power dissipation and ultracompact size. We introduce a multigate superconducting nanowire cryotron (nTron) that functions as an 8-input OR gate within a footprint of approximately 0.5 µm2. Four cryotrons compose a 4-bit encoder that has a bias margin of 18.9%, an operation speed greater than 250 MHz, an average switching jitter of 75 ps, and a power dissipation of less than 1 µW. We apply this encoder to read out a superconducting-nanowire single-photon detector array whose pixel location is digitized into a 4-bit binary address. The small size of the nanowire combined with the low power dissipation makes nTrons promising for future monolithic integration.

3.
Opt Lett ; 45(24): 6732-6735, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325883

RESUMO

The quality of an image is limited to the signal-to-noise ratio of the output from sensors. As the background noise increases much more than the signal, which can be caused by either a huge attenuation of light pulses after a long-haul transmission or a blinding attack with a strong flood illumination, an imaging system stops working properly. Here we built a superconducting single-photon infrared camera of negligible dark counts and 60 ps timing resolution. Combining with an adaptive 3D slicing algorithm that gives each pixel an optimal temporal window to distinguish clustered signal photons from a uniformly distributed background, we successfully reconstructed 3D single-photon images at both a low signal level (∼1 average photon per pixel) and extremely high noise background (background-to-signal ratio = 200 within a period of 50 ns before denoising). Among all detection events, we were able to remove 99.45% of the noise photons while keeping the signal photon loss at 0.74%. This Letter is a direct outcome of quantum-inspired imaging that asks for a co-development of sensors and computational methods. We envision that the proposed methods can increase the working distance of a long-haul imaging system or defend it from blinding attacks.

4.
Sci Rep ; 9(1): 16345, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705023

RESUMO

Scalable superconducting nanowire single photon detector (SNSPDs) arrays require cryogenic digital circuits for multiplexing the output detection pulses. Among existing superconducting digital devices, superconducting nanowire cryotron (nTron) is a three-terminal device with an ultra-compact size, which is promising for large scale monolithic integration. In this report, in order to evaluate the potential and possibility of using nTrons for reading and digitizing SNSPD signals, we characterized the grey zone, speed, timing jitter and power dissipation of a proper designed nTron. With a DC bias on the gate, the nTron can be triggered by a few µA high and nanoseconds wide input signal, showing the nTron was capable of reading an SNSPD pulse at the same signal level. The timing jitter depended on the input signal level. For a 20 µA high and 5 ns wide input pulse, the timing jitter was 33.3 ps, while a typical SNSPD's jitter was around 50 ps. With removing the serial inductors and operating it in an AC bias mode. The nTron was demonstrated to be operated at a clock frequency of 615.4 MHz, which was faster than the maximum counting rate of a typical SNSPD. In additional, with a 50 Ω bias resistor and biased at 17.6 µA, the nTron had a total power dissipation of 19.7 nW. Although RSFQ circuits are faster than nTrons, for reading SNSPD or other detector arrays that demands less operation speed, our results suggest a digital circuit made from nTrons could be another promising alternative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA