Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 146(6): 2612-2626, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385662

RESUMO

Autism spectrum disorders caused by both genetic and environmental factors are strongly male-biased neuropsychiatric conditions. However, the mechanism underlying the sex bias of autism spectrum disorders remains elusive. Here, we use a mouse model in which the autism-linked gene Cttnbp2 is mutated to explore the potential mechanism underlying the autism sex bias. Autism-like features of Cttnbp2 mutant mice were assessed via behavioural assays. C-FOS staining identified sex-biased brain regions critical to social interaction, with their roles and connectivity then validated by chemogenetic manipulation. Proteomic and bioinformatic analyses established sex-biased molecular deficits at synapses, prompting our hypothesis that male-biased nutrient demand magnifies Cttnbp2 deficiency. Accordingly, intakes of branched-chain amino acids (BCAA) and zinc were experimentally altered to assess their effect on autism-like behaviours. Both deletion and autism-linked mutation of Cttnbp2 result in male-biased social deficits. Seven brain regions, including the infralimbic area of the medial prefrontal cortex (ILA), exhibit reduced neural activity in male mutant mice but not in females upon social stimulation. ILA activation by chemogenetic manipulation is sufficient to activate four of those brain regions susceptible to Cttnbp2 deficiency and consequently to ameliorate social deficits in male mice, implying an ILA-regulated neural circuit is critical to male-biased social deficits. Proteomics analysis reveals male-specific downregulated proteins (including SHANK2 and PSD-95, two synaptic zinc-binding proteins) and female-specific upregulated proteins (including RRAGC) linked to neuropsychiatric disorders, which are likely relevant to male-biased deficits and a female protective effect observed in Cttnbp2 mutant mice. Notably, RRAGC is an upstream regulator of mTOR that senses BCAA, suggesting that mTOR exerts a beneficial effect on females. Indeed, increased BCAA intake activates the mTOR pathway and rescues neuronal responses and social behaviours of male Cttnbp2 mutant mice. Moreover, mutant males exhibit greatly increased zinc demand to display normal social behaviours. Mice carrying an autism-linked Cttnbp2 mutation exhibit male-biased social deficits linked to specific brain regions, differential synaptic proteomes and higher demand for BCAA and zinc. We postulate that lower demand for zinc and BCAA are relevant to the female protective effect. Our study reveals a mechanism underlying sex-biased social defects and also suggests a potential therapeutic approach for autism spectrum disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Masculino , Feminino , Animais , Transtorno Autístico/genética , Proteômica , Sexismo , Transtorno do Espectro Autista/genética , Serina-Treonina Quinases TOR , Nutrientes , Zinco , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Proteínas dos Microfilamentos
2.
Org Biomol Chem ; 16(24): 4482-4494, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29869668

RESUMO

The reaction of methyl anthranilates with N-arylcyanamides in the presence of p-TsOH in t-BuOH under reflux afforded predominantly 3-arylquinazolin-4-ones. In contrast, the reaction of the same reactants with TMSCl in t-BuOH at 60 °C followed by the Dimroth rearrangement in aqueous ethanolic sodium hydroxide gave exclusively the regioisomers, 2-(N-arylamino)quinazolin-4-ones. The regioselective synthesis of N-aryl-substituted 2-aminoquinazolin-4-ones can be further applied to the synthesis of benzimidazo[2,1-b]quinazolin-12-ones.


Assuntos
Antineoplásicos/síntese química , Quinazolinonas/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ciclização , Humanos , Estrutura Molecular , Nitrilas/química , Quinazolinonas/farmacologia , ortoaminobenzoatos/química
3.
RNA Biol ; 12(9): 1054-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26383777

RESUMO

Plant microRNAs (miRNAs) are predominantly 21 nucleotides (nt) long but non-canonical lengths of 22 and 20 nt are commonly observed in diverse plant species. While miRNAs longer than 21 nt can be attributed to the neglect of unpaired bases within asymmetric bulges by the ruler function of dicer-like 1 (DCL1), how 20-nt miRNA is generated remains obscure. Analysis of small RNA data revealed that 20-nt miRNA can be divided into 3 main groups featured by atypical 3' overhangs or shorter duplex regions. Asymmetric bulges or mismatches at specific positions are commonly observed within each group and were shown to be crucial for 20-nt miRNA formation. Analysis of DCL1 cleavage sites on 20-nt miRNA precursors suggests that these determinants might alter precursor structure or trigger 3'-end decay of mature miRNA. The results herein advance our understanding of miRNA biogenesis and demonstrate that the effect of asymmetric bulges on miRNA length could be position-dependent.


Assuntos
Pareamento Incorreto de Bases , MicroRNAs/química , MicroRNAs/genética , Conformação de Ácido Nucleico , Plantas/genética , RNA de Plantas , Pareamento de Bases , Modelos Biológicos , Ácidos Nucleicos Heteroduplexes , Processamento Pós-Transcricional do RNA , Ribonuclease III/metabolismo
4.
Neuroscience ; 521: 102-109, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142179

RESUMO

Social buffering is a phenomenon where stress responses are ameliorated by an affiliative conspecific. Our previous findings suggest that the posterior complex of the anterior olfactory nucleus (AOP) is well positioned to participate in the neural mechanisms underlying social buffering. However, the lack of anatomical information prevents us from further estimating the role of the AOP. Here, we obtained anatomical information regarding the AOP in male rats. In Experiment 1 (n = 5), among 4',6-diamidino-2-phenylindole-positive cells in the AOP, the proportion of glutamic acid decarboxylase 67 (GAD67)-positive cells was 13.8% ± 1.2%. In Experiment 2 (n = 5), among the cells that were labeled by a retrograde tracer injected into the basolateral complex of the amygdala (BLA), the proportion of GAD67-positive cells was 18.6% ± 0.8%. In Experiment 3 (n = 5), we demonstrated the existence of cells that were labeled by the retrograde tracer injected into the posterior part of the medial amygdala (MeP), mostly into the ventral part of the MeP. In addition, the proportion of GAD67-positive cells among the tracer-labeled cells was 21.7% ± 1.7%. In Experiment 4 (n = 3), the retrograde tracers were injected into the BLA and MeP, mostly into the ventral part of the MeP. The proportion of double-labeled cells among the tracer-labeled cells was 2.1% ± 1.2%. Taken together, these results suggest that the AOP is predominantly composed of glutamatergic neurons. In addition, the AOP sends mutually independent glutamatergic-predominant projections to the BLA and MeP.


Assuntos
Tonsila do Cerebelo , Córtex Olfatório , Ratos , Masculino , Animais , Tonsila do Cerebelo/fisiologia , Vias Neurais
5.
FEBS J ; 289(8): 2282-2300, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33511762

RESUMO

Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Humanos , Mamíferos , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA