Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Lab Anal ; 35(5): e23754, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33813769

RESUMO

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is a heterogeneous disease with varying clinical courses and responses to treatment. To improve the prognosis of patients, it is necessary to understand such heterogeneity. METHODS: We used single-sample gene set enrichment analysis to classify 35 MIBC cases into immunity-high and immunity-low groups. Bioinformatics analyses were conducted to compare the differences between these groups. Eventually, single-cell mass cytometry (CyTOF) was used to compare the characteristics of the immune microenvironment between the patients in the two groups. RESULTS: Compared with patients in the immunity-low group, patients in the immunity-high group had a higher number of tumor-infiltrating immune cells and greater enrichment of gene sets associated with antitumor immune activity. Furthermore, positive immune response-related pathways were more enriched in the immunity-high group. We identified 26 immune cell subsets, including cytotoxic T cells (Tcs), helper T cells (Ths), regulatory T cells (Tregs), B cells, macrophages, natural killer (NK) cells, and dendritic cells (DCs) using CyTOF. Furthermore, there was a higher proportion of CD45+ lymphocytes and enrichment of one Tc subset in the immunity-high group. Additionally, M2 macrophages were highly enriched in the immunity-low group. Finally, there was higher expression of PD-1 and Tim-3 on Tregs as well as a higher proportion of PD-1+ Tregs in the immunity-low group than in the immunity-high group. CONCLUSION: In summary, the immune microenvironments of the immunity-high and immunity-low groups of patients with MIBC are heterogeneous. Specifically, immune suppression was observed in the immune microenvironment of the patients in the immunity-low group.


Assuntos
Citometria de Fluxo , Músculos/patologia , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Invasividade Neoplásica , Microambiente Tumoral/genética
2.
Aging (Albany NY) ; 16(3): 2542-2562, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305811

RESUMO

The H2A.Z variant histone 1 (H2AZ1) is aberrantly expressed in various tumors, correlating with an unfavorable prognosis. However, its role in hepatocellular carcinoma (HCC) remains unclear. We aimed to elucidate the pathways affected by H2AZ1 and identify promising therapeutic targets for HCC. Following bioinformatic analysis of gene expression and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus database, we found 6,344 dysregulated genes related to H2AZ1 overexpression in HCC tissues (P < 0.05). We performed weighted gene co-expression network analysis to identify the gene module most related to H2AZ1. The H2AZ1-based index was further developed using Cox regression analysis, which revealed that the poor prognosis in the high H2AZ1-based index group could be attributed to elevated tumor stemness (P < 0.05). Moreover, the clinical model showed good prognostic potential (AUC > 0.7). We found that H2AZ1 knockdown led to reduced superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) levels, and increased apoptosis rate in tumor cells (P < 0.001). Thus, we developed an H2AZ1-based index model with the potential to predict the prognosis of patients with HCC. Our findings provide initial evidence that H2AZ1 overexpression plays a pivotal role in HCC initiation and progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Cognição , Histonas , Neoplasias Hepáticas/genética , Prognóstico
3.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339238

RESUMO

Background: Small Cajal body-specific RNAs (scaRNAs) are a specific subset of small nucleolar RNAs (snoRNAs) that have recently emerged as pivotal contributors in diverse physiological and pathological processes. However, their defined roles in carcinogenesis remain largely elusive. This study aims to explore the potential function and mechanism of SCARNA12 in bladder cancer (BLCA) and to provide a theoretical basis for further investigations into the biological functionalities of scaRNAs. Materials and Methods: TCGA, GEO and GTEx data sets were used to analyze the expression of SCARNA12 and its clinicopathological significance in BLCA. Quantitative real-time PCR (qPCR) and in situ hybridization were applied to validate the expression of SCARNA12 in both BLCA cell lines and tissues. RNA sequencing (RNA-seq) combined with bioinformatics analyses were conducted to reveal the changes in gene expression patterns and functional pathways in BLCA patients with different expressions of SCARNA12 and T24 cell lines upon SCARNA12 knockdown. Single-cell mass cytometry (CyTOF) was then used to evaluate the tumor-related cell cluster affected by SCARNA12. Moreover, SCARNA12 was stably knocked down in T24 and UMUC3 cell lines by lentivirus-mediated CRISPR/Cas9 approach. The biological effects of SCARNA12 on the proliferation, clonogenic, migration, invasion, cell apoptosis, cell cycle, and tumor growth were assessed by in vitro MTT, colony formation, wound healing, transwell, flow cytometry assays, and in vivo nude mice xenograft models, respectively. Finally, a chromatin isolation by RNA purification (ChIRP) experiment was further conducted to delineate the potential mechanisms of SCARNA12 in BLCA. Results: The expression of SCARNA12 was significantly up-regulated in both BLCA tissues and cell lines. RNA-seq data elucidated that SCARAN12 may play a potential role in cell adhesion and extracellular matrix (ECM) related signaling pathways. CyTOF results further showed that an ECM-related cell cluster with vimentin+, CD13+, CD44+, and CD47+ was enriched in BLCA patients with high SCARNA12 expression. Additionally, SCARNA12 knockdown significantly inhibited the proliferation, colony formation, migration, and invasion abilities in T24 and UMUC3 cell lines. SCARNA12 knockdown prompted cell arrest in the G0/G1 and G2/M phase and promoted apoptosis in T24 and UMUC3 cell lines. Furthermore, SCARNA12 knockdown could suppress the in vivo tumor growth in nude mice. A ChIRP experiment further suggested that SCARNA12 may combine transcription factors H2AFZ to modulate the transcription program and then affect BLCA progression. Conclusions: Our study is the first to propose aberrant alteration of SCARNA12 and elucidate its potential oncogenic roles in BLCA via the modulation of ECM signaling. The interaction of SCARNA12 with the transcriptional factor H2AFZ emerges as a key contributor to the carcinogenesis and progression of BLCA. These findings suggest SCARNA12 may serve as a diagnostic biomarker and potential therapeutic target for the treatment of BLCA.

4.
Front Cell Dev Biol ; 11: 1194199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333982

RESUMO

Background: Hepatocellular carcinoma (HCC) is among the deadliest cancers worldwide, and advanced HCC is difficult to treat. Identifying specific cell subpopulations in the tumor microenvironment and exploring interactions between the cells and their environment are crucial for understanding the development, prognosis, and treatment of tumors. Methods: In this study, we constructed a tumor ecological landscape of 14 patients with HCC from 43 tumor tissue samples and 14 adjacent control samples. We used bioinformatics analysis to reveal cell subpopulations with potentially specific functions in the tumor microenvironment and to explore the interactions between tumor cells and the tumor microenvironment. Results: Immune cell infiltration was evident in the tumor tissues, and BTG1 + RGS1 + central memory T cells (Tcms) interact with tumor cells through CCL5-SDC4/1 axis. HSPA1B may be associated with remodeling of the tumor ecological niche in HCC. Cancer-associated fibroblasts (CAFs) and macrophages (TAMs) were closely associated with tumor cells. APOC1 + SPP1 + TAM secretes SPP1, which binds to ITGF1 secreted by CAFs to remodel the tumor microenvironment. More interestingly, FAP + CAF interacts with naïve T cells via the CXCL12-CXCR4 axis, which may lead to resistance to immune checkpoint inhibitor therapy. Conclusion: Our study suggests the presence of tumor cells with drug-resistant potential in the HCC microenvironment. Among non-tumor cells, high NDUFA4L2 expression in fibroblasts may promote tumor progression, while high HSPA1B expression in central memory T cells may exert anti-tumor effects. In addition, the CCL5-SDC4/1 interaction between BTG1 + RGS1 + Tcms and tumor cells may promote tumor progression. Focusing on the roles of CAFs and TAMs, which are closely related to tumor cells, in tumors would be beneficial to the progress of systemic therapy research.

5.
Front Genet ; 13: 1057302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568387

RESUMO

Background: The tumor suppressor gene TP53 is frequently mutated or inactivated in bladder cancer (BLCA), which is implicated in the pathogenesis of tumor. However, the cellular mechanisms of TP53 mutations are complicated, yet well-defined, but their clinical prognostic value in the management of BLCA remains controversial. This study aimed to explore the role of TP53 mutation in regulating the tumor microenvironment (TME), elucidate the effects of TP53 activity on BLCA prognosis and immunotherapy response. Methods: A TP53-related signature based on TP53-induced and TP53-repressed genes was used to construct a TP53 activity-related score and classifier. The abundance of different immune cell types was determined using CIBERSORT to estimate immune cell infiltration. Moreover, the heterogeneity of the tumor immune microenvironment between the high and low TP53 score groups was further evaluated using single-cell mass cytometry (CyTOF) and imaging mass cytometry (IMC). Moreover, pathway enrichment analysis was performed to explore the differential biological functions between tumor epithelial cells with high and low TP53 activity scores. Finally, the receptor-ligand interactions between immune cells and tumor epithelial cells harboring distinct TP53 activity were analyzed by single-cell RNA-sequencing. Results: The TP53 activity-related gene signature differentiated well between TP53 functional retention and inactivation in BLCA. BLCA patients with low TP53 scores had worse survival prognosis, more TP53 mutations, higher grade, and stronger lymph node metastasis than those with high TP53 scores. Additionally, CyTOF and IMC analyses revealed that BLCA patients with low TP53 scores exhibited a potent immunosuppressive TME. Consistently, single-cell sequencing results showed that tumor epithelial cells with low TP53 scores were significantly associated with high cell proliferation and stemness abilities and strongly interacted with immunosuppressive receptor-ligand pairs. Conclusion: BLCA patients with low TP53 scores have a worse prognosis and a more immunosuppressive TME. This TP53 activity-related signature can serve as a potential prognostic signature for predicting the immune response, which may facilitate the development of new strategies for immunotherapy in BLCA.

6.
Front Genet ; 12: 695597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276798

RESUMO

Small nuclear RNA is a class of non-coding RNA that widely exist in the nucleus of eukaryotes. Accumulated evidences have shown that small nuclear RNAs are associated with the regulation of gene expression in various tumor types. To explore the gene expression changes and its potential effects mediated by U11 snRNA in bladder cancer cells, U11 snRNA knockout and overexpressed cell lines were constructed and further used to analyze the gene expression changes by RNA sequencing. The differentially expressed genes were found to be mainly enriched in tumor-related pathways both in the U11 knockout and overexpression cell lines, such as NF-kappa B signaling pathway, bladder cancer and PI3K-Akt signaling pathway. Furthermore, alternative splicing events were proposed to participate in the potential regulatory mechanism induced by the U11 knockout or overexpression. In conclusion, U11 may be involved in the regulation of gene expression in bladder cancer cells, which may provide a potentially new biomarker for clinical diagnosis and treatment of bladder cancer.

7.
Onco Targets Ther ; 13: 10901-10916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149607

RESUMO

PURPOSE: Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play critical roles in the development of many cancer types. However, the changes of lncRNAs expression profiles in hepatocarcinogenesis remain largely unknown. Therefore, the purpose of this study was to identify the clinical significance, oncogenic functions, and potential mechanism of cancer-related lncRNAs in hepatocellular carcinoma (HCC). MATERIALS AND METHODS: An in vitro hepatocellular carcinoma model was established via oncogene-mediated transformation with a combination of three genetic alterations, including hTERT overexpression, inactivation of P53, and KRAS activation. Changes of biological function and transcriptome profile in these cell lines were determined by colony formation assay, MTT assay, wound-healing scratch assay, xenograft nude mice model, mass cytometry and RNA sequencing (RNA-Seq). Furthermore, 116 HCC tissues and its corresponding normal tumor-adjacent tissues were explored to validate the results of cell lines. Finally, RNA sequencing, single-cell mass cytometry and fluorescence-activated cell sorter were applied to evaluate the potential association between the expression of lncRNA and the stemness of HCC. RESULTS: LncRNA HOXA-AS2 was aberrantly upregulated and it may be involved in the regulation of cancer stem cells during oncogenic transformation. Consistently, lncRNA HOXA-AS2 expression was significantly upregulated in HCC and its higher expression positively correlated with poor prognosis and stem cell-related functions. Moreover, a specific cancer stem cell subpopulation with EPCAM+, C-MYC+ and CK19+ may exist in higher HOXA-AS2 expression HCC patients. CONCLUSION: LncRNA HOXA-AS2 plays pivotal roles in the occurrence and progression of HCC, which may act as a therapeutic target for prognostic biomarker in hepatocellular carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA