Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400236

RESUMO

Hepatitis B virus (HBV) is the most common chronic viral infection globally, affecting ∼360 million people and causing about 1 million deaths annually due to end-stage liver disease or hepatocellular carcinoma. Current antiviral treatments rarely achieve a functional cure for chronic hepatitis B, highlighting the need for improved monitoring and intervention strategies. This study explores the role of the sphingosine kinase 1 (SphK1)-sphingosine-1-phosphate (S1P) axis in HBV-related liver injury. We investigated the association between serum S1P concentration and HBV DNA levels in chronic hepatitis B patients, finding a significant positive correlation. Additionally, SphK1 was elevated in liver tissues of HBV-positive hepatocellular carcinoma patients, particularly in HBsAg-positive regions. HBV infection models in HepG2-sodium taurocholate cotransporting polypeptide cells confirmed that HBV enhances SphK1 expression and S1P production. Inhibition of HBV replication through antiviral agents and the CRISPR-Cas9 system reduced SphK1 and S1P levels. Further, we identified the transcription factor USF1 as a key regulator of SphK1 expression during HBV infection. USF1 binds to the SphK1 promoter, increasing its transcriptional activity, and is upregulated in response to HBV infection. In vivo studies in mice demonstrated that HBV exposure promotes the expression of USF1 and SphK1-S1P. These findings suggest that the SphK1-S1P axis, regulated by HBV-induced USF1, could serve as a potential biomarker and therapeutic target for HBV-related liver injury.

2.
Cell Physiol Biochem ; 52(4): 758-768, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30933440

RESUMO

BACKGROUND/AIMS: Bromodomain-containing protein 4 (BRD4) and phosphatidylinositol 3-kinase (PI3K) are key oncogenic cascades in colorectal cancer (CRC). SF1126 is a novel and potent PI3K-BRD4 dual inhibitor. METHODS: CRC cells and human colon epithelial cells were treated with SF1126. Cell survival was tested by MTT and soft agar colony formation assays. Cell proliferation was tested by BrdU ELISA method. Cell apoptosis was tested by a TUNEL staining method and Histone DNA ELISA. Western blotting was utilized to test the signaling proteins. A HT-29 xenograft mice model was established to study the anti-tumor activity of SF1126 in vivo. RESULTS: SF1126 potently inhibited the survival, proliferation, and progression of the cell cycle in an established CRC cell line (HT-29) and primary human colon cancer cells. Significant activation of apoptosis was detected in SF1126-treated CRC cells. In CRC cells, SF1126 blocked Akt-mammalian target of rapamycin (mTOR) complex1/2 signaling and downregulated BRD4 target proteins (Myc and cyclin D1). Further studies showed that SF1126 activated p38 signaling in CRC cells. In contrast, the p38 inhibitors or p38 short hairpin RNA inhibited SF1126-induced cytotoxicity and apoptosis in CRC cells. In vivo, subcutaneous administration of SF1126 significantly inhibited HT-29 xenograft tumor growth in nude mice. CONCLUSION: SF1126 inhibits CRC cell growth possibly by targeting PI3K-Akt-mTOR, BRD4, and p38 signaling.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Oligopeptídeos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cromonas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Oligopeptídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transplante Heterólogo
3.
Cell Death Dis ; 15(9): 643, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227564

RESUMO

This study investigates the potential anti-colorectal cancer (CRC) activity of IMT1, a novel specific inhibitor of mitochondrial RNA polymerase (POLRMT). Single-cell RNA sequencing data reveal that POLRMT is overexpressed in CRC cells. Additionally, elevated POLRMT expression was observed in local CRC tissues and cells, while its expression remained relatively low in colon epithelial tissues and cells. IMT1 significantly inhibited colony formation, cell viability, proliferation, cell cycle progression, and migration in both primary and immortalized CRC cells. Furthermore, IMT1 induced apoptosis and cell death in CRC cells. The inhibition of POLRMT by IMT1 disrupted mitochondrial functions in CRC cells, leading to mitochondrial depolarization, oxidative damage, and decreased ATP levels. Using targeted shRNA to silence POLRMT closely mirrored the effects of IMT1, showing robust anti-CRC cell activity. Crucially, the efficacy of IMT1 was diminished in CRC cells with silenced POLRMT. Contrarily, boosting POLRMT expression externally by a lentiviral construct promoted the proliferation and migration of CRC cells. Importantly, treatment with IMT1 or silencing POLRMT in primary colon cancer cells decreased the phosphorylation of Akt1-S6K1, whereas overexpression of POLRMT had the opposite effect. In nude mice, orally administering IMT1 potently restrained primary colon cancer xenograft growth. IMT1 suppressed POLRMT activity, disrupted mitochondrial function, hindered Akt-mTOR activation, and prompted apoptosis within the xenograft tissues. In addition, IMT1 administration suppressed lung metastasis of primary colon cancer cells in nude mice. These combined results highlight the robust anti-CRC activity of IMT1 by specifically targeting POLRMT.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Camundongos Nus , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino
4.
Cell Death Dis ; 11(9): 805, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978368

RESUMO

A1874 is a novel BRD4-degrading proteolysis targeting chimera (PROTAC). In primary colon cancer cells and established HCT116 cells, A1874 potently inhibited cell viability, proliferation, cell cycle progression, as well as cell migration and invasion. The BRD4-degrading PROTAC was able to induce caspase and apoptosis activation in colon cancer cells. Furthermore, A1874-induced degradation of BRD4 protein and downregulated BRD-dependent genes (c-Myc, Bcl-2, and cyclin D1) in colon cancer cells. Significantly, A1874-induced anti-colon cancer cell activity was more potent than the known BRD4 inhibitors (JQ1, CPI203, and I-BET151). In BRD4-knockout colon cancer cells A1874 remained cytotoxic, indicating the existence of BRD4-independent mechanisms. In addition to BRD4 degradation, A1874 cytotoxicity in colon cancer cells was also associated with p53 protein stabilization and reactive oxygen species production. Importantly, the antioxidant N-acetyl-cysteine and the p53 inhibitor pifithrin-α attenuated A1874-induced cell death and apoptosis in colon cancer cells. In vivo, A1874 oral administration potently inhibited colon cancer xenograft growth in severe combined immuno-deficient mice. BRD4 degradation and p53 protein elevation, as well as apoptosis induction and oxidative stress were detected in A1874-treated colon cancer tissues. Together, A1874 inhibits colon cancer cell growth through both BRD4-dependent and -independent mechanisms.


Assuntos
Neoplasias do Colo/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Feminino , Humanos , Camundongos , Camundongos SCID , Oncogenes
5.
Oncotarget ; 8(1): 988-998, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27894091

RESUMO

Here, we assessed the anti-colorectal cancer (CRC) cell activity of cinobufagin (CBG). We found that CBG exerted potent cytotoxic and anti-proliferative activity against CRC lines (HCT-116 and HT-29) and primary human CRC cells. Meanwhile, it activated apoptosis, and disrupted cell-cycle progression in the cells. At the signaling level, CBG treatment in CRC cells provoked endoplasmic reticulum stress (ER stress), the latter was evidenced by caspase-12 activation, CHOP expression, as well as PERK and IRE1 phosphorylations. Contrarily, the ER stress inhibitor salubrinal, the caspase-12 inhibitor and CHOP shRNA remarkably attenuated CBG-induced CRC cell death and apoptosis. Further, CBG in-activated mammalian target or rapamycin complex 1 (mTORC1), which appeared responsible for proliferation inhibition in CRC cells. Introduction of a constitutively-active S6K1 ("ca-S6K1") restored proliferation of CBG-treated CRC cells. Finally, CBG intraperitoneal injection suppressed HCT-116 xenograft tumor growth in the nude mice. CHOP upregulation and mTORC1 in-activation were also noticed in CBG-treated HCT-116 tumors. The results of this preclinical study suggest that CBG could be tested as promising anti-CRC agent.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncotarget ; 7(47): 77815-77824, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27780925

RESUMO

The potential effect of PKC412, a small molecular multi-kinase inhibitor, in colorectal cancer (CRC) cells was evaluated here. We showed that PKC412 was cytotoxic and anti-proliferative against CRC cell lines (HT-29, HCT-116, HT-15 and DLD-1) and primary CRC cells. PKC412 provoked caspase-dependent apoptotic death, and induced G2-M arrest in the CRC cells. AKT activation was inhibited by PKC412 in CRC cells. Reversely, expression of constitutively-active AKT1 (CA-AKT1) decreased the PKC412's cytotoxicity against HT-29 cells. We propose that Bcl-2 could be a primary resistance factor of PKC412. ABT-737, a Bcl-2 inhibitor, or Bcl-2 siRNA knockdown, dramatically potentiated PKC412's lethality against CRC cells. Forced Bcl-2 over-expression, on the other hand, attenuated PKC412's cytotoxicity. Significantly, PKC412 oral administration suppressed AKT activation and inhibited HT-29 tumor growth in nude mice. Mice survival was also improved with PKC412 administration. These results indicate that PKC412 may have potential value for CRC treatment.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Estaurosporina/análogos & derivados , Animais , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estaurosporina/administração & dosagem , Estaurosporina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Zhonghua Wei Chang Wai Ke Za Zhi ; 15(5): 499-501, 2012 May.
Artigo em Zh | MEDLINE | ID: mdl-22648847

RESUMO

OBJECTIVE: To investigate the feasibility and short-term outcomes of total laparoscopic sigmoid and rectal surgery combined with transanal endoscopic microsurgery(TEM). METHODS: The clinical data of 26 patients with colorectal carcinoma treated by total laparoscopic surgery with TEM between May 2010 and May 2011 in the Shanghai Ruijin Hospital were retrospectively analyzed. RESULTS: All the 26 operations were successfully accomplished laparoscopically. There was no conversion to open procedure. No diverting ileostomy was made. The mean operative time was (151.6±25.9) min. The mean blood loss was (200.2±114.7) ml. The mean time to first flatus was (2.0±0.5) d. The mean tumor size was (3.0±0.7) cm and all resection margins were negative. The mean number of lymph nodes harvested was (12.9±2.2). Six patients developed postoperative anastomotic leakage, all of who had tumors in the lower rectum. There were no ureteral injury, intestinal obstruction, or pulmonary infection. CONCLUSIONS: Total laparoscopic sigmoid and rectal surgery combined with TEM is a safe and feasible minimally invasive surgery. It is an improvement by combining laparoscopic skills with the concept of natural orifice transluminal endoscopic surgery.


Assuntos
Neoplasias Colorretais/cirurgia , Endoscopia Gastrointestinal/métodos , Laparoscopia , Adulto , Idoso , Canal Anal/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA