RESUMO
The COVID-19 pandemic has significantly impacted mental health worldwide, leading to increased rates of suicidal behavior. This systematic review and meta-regression aim to investigate the global prevalence and risk factors associated with suicidal behaviors in the general population during the pandemic. The study included 202 articles from January 1, 2019, to October 31, 2023, sourced from databases such as Embase, MEDLINE, CINAHL, Web of Science, and Cochrane Library. The meta-analysis revealed a prevalence of 13.5% for suicidal ideation, 10.4% for suicide attempts, and a death rate of 0.5%, translating to 4.52 per 100,000 person-years. Significant risk factors identified include being transgender, young adults (18-44 years), unmarried status, low education, retirement, living alone, low social support, a history of suicide attempts, substance use, depression, anxiety, PTSD, sleep problems, poor perceived physical health, loneliness, quarantine, and residing in the Americas or multiple regions. The findings underscore the urgent need for targeted mental health interventions during pandemics, focusing on high-risk groups such as young adults, transgender individuals, those with low social support, and people with mental health issues. This comprehensive analysis provides valuable insights for policymakers and healthcare providers to develop effective strategies to mitigate the heightened risk of suicide during global health crises.
RESUMO
Designing wound dressings necessitates the crucial considerations of maintaining a moist environment and implementing effective bacterial control. Furthermore, developing a three-dimensional framework emulating the extracellular matrix (ECM) confers advantages in fostering cellular migration and proliferation. Inspired by this, hydrogel/nanofiber composites have been demonstrated as promising materials for wound dressings. The composites also overcome the disadvantages of poor mechanical properties and rapid release of traditional pure hydrogels. In this study, we constructed a calcium alginate hydrogel/polylactic acid nanofiber (CAH/PLANF) composite with an interpenetrated network. Additionally, the synthesis of zeolitic imidazolate framework-8 (ZIF-8) incorporated into the composite system endowed the system with enhanced mechanical properties and photodynamic antibacterial attributes. The obtained composite patch (ZIF-8@CAH/PLANF) exhibited excellent swelling, strong mechanical properties, low cytotoxicity, and durable photodynamic antibacterial effect with an antibacterial efficacy of higher than 99.99%. Finally, bacterial infection and wound healing properties were investigated in vivo, and the ZIF-8@CAH/PLANF patch was proven to have the ability to fight infection and accelerate wound healing.
Assuntos
Nanofibras , Zeolitas , Hidrogéis/farmacologia , Cicatrização , Antibacterianos/farmacologiaRESUMO
Hydrogels are widely used in wound dressings due to their moisturizing properties and biocompatibility. However, traditional hydrogel dressings cannot monitor wounds and provide accurate treatment. Recent advancements focus on hydrogel dressings with integrated monitoring and treatment functions, using sensors or intelligent materials to detect changes in the wound microenvironment. These dressings enable responsive treatment to promote wound healing. They can carry out responsive dynamic treatment in time to effectively promote wound healing. However, there is still a lack of comprehensive reviews of hydrogel wound dressings that incorporate both wound micro-environment monitoring and treatment functions. Therefore, this review categorizes hydrogel dressings according to wound types and examines their current status, progress, challenges, and future trends. It discusses various wound types, including infected wounds, burns, and diabetic and pressure ulcers, and explores the wound healing process. The review presents hydrogel dressings that monitor wound conditions and provide tailored treatment, such as pH-sensitive, temperature-sensitive, glucose-sensitive, pressure-sensitive, and nano-composite hydrogel dressings. Challenges include developing dressings that meet the standards of excellent biocompatibility, improving monitoring accuracy and sensitivity, and overcoming obstacles to production and commercialization. Furthermore, it provides the current status, progress, challenges, and future trends in this field, aiming to give a clear view of its past, present, and future.
RESUMO
The ubiquity of wearables, coupled with the increasing demand for power, presents a unique opportunity for nanostructured fiber-based mobile energy storage systems. When designing wearable electronic textiles, there is a need for mechanically flexible, low-cost and light-weight components. To meet this demand, we have developed an all-in-one fiber supercapacitor with a total thickness of less than 100 µm using a novel facile coaxial wet-spinning approach followed by a fiber wrapping step. The formed triaxial fiber nanostructure consisted of an inner poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) core coated with an ionically conducting chitosan sheath, subsequently wrapped with a carbon nanotube (CNT) fiber. The resulting supercapacitor is highly flexible, delivers a maximum energy density 5.83 Wh kg-1 and an extremely high power of 1399 W kg-1 along with remarkable cyclic stability and specific capacitance. This asymmetric all-in-one fiber supercapacitor may pave the way to a future generation of wearable energy storage devices.
RESUMO
The encapsulation of multiple enzyme/nanoenzyme systems within mental-organic frameworks (MOFs) shows great promise for a myriad of practical applications. Herein, two sequential biocatalysts, oxidase and hemin, were coupled together with close proximity using a bifunctional polymer, poly(1-vinylimidazole) (PVI), and encapsulated into MOFs. As a demonstration of the power of such a protocol, glucose oxidase&PVI-hemin encapsulated in ZIF-8 showed significant enhancement of bioactivity for a cascade reaction compared to its counterpart without PVI. For the colorimetric assay of glucose, it showed a low limit of detection of 0.4 µM (S/N = 3), high selectivity, and excellent stability. Because there are numerous biocatalysts that can readily be coupled and encapsulated into MOFs, a myriad of interesting properties can be simply realized by encapsulating different sequential biocatalysts.
Assuntos
Enzimas Imobilizadas/química , Glucose Oxidase/química , Glucose/análise , Hemina/química , Estruturas Metalorgânicas/química , Animais , Aspergillus niger/enzimologia , Proteínas de Bactérias/química , Benzotiazóis/química , Biocatálise , Técnicas Biossensoriais/métodos , Bovinos , Colesterol Oxidase/química , Colorimetria/métodos , Proteínas Fúngicas/química , Humanos , Peróxido de Hidrogênio/química , Imidazóis/química , Limite de Detecção , Polivinil/química , Pseudomonas fluorescens/enzimologia , Ácidos Sulfônicos/químicaRESUMO
The demands for novel approaches that ensure stability in lithium-ion batteries are increasing and have led to the development of new materials and fabrication strategies. In this study, sandwich structure-like polysulfonamide (PSA)/polyacrylonitrile (PAN)/polysulfonamide (PSA) composite nanofibrous membranes were prepared via an electrospinning method and used as a separator in lithium-ion batteries. The spinning time of each polymer nanofiber layer of the composite membranes was respectively and precisely controlled to maximize the merits of each component. It was found that the PSA/PAN/PSA composite nanofibrous membranes exhibited superior thermal stability and excellent porosity, liquid electrolyte uptake and ionic conductivity, showing obvious enhancement as compared to those of the commercial microporous polyolefin separator (Celgard 2400), pure PSA and pure PAN membranes. In addition, they were evaluated in the assembled Li/LiFePO4 cells with an electrolyte solution, and good cycling performance and C-rate capacity were obtained; especially for the case of the PP6P membrane, the first discharge capacity of the battery reached 152 mA h g-1, and the discharge capacity retention ratio was 85.94% from 0.2C to 2C; moreover, the battery displayed highest capacity retention ratio after 70 cycles, which was found to be 96.2% of its initial discharge capacity. Therefore, the PSA/PAN/PSA composite nanofibrous membranes can be regarded as a promising candidate for application in lithium-ion batteries.
RESUMO
Wearable energy storage devices are of practical interest, but few have been commercially exploited. Production of electrodes with extended cycle life, as well as high energy and power densities, coupled with flexibility, remains a challenge. Herein, we have demonstrated the development of a high-performance hybrid carbon nanotube (CNT) fiber-based supercapacitor for the first time using conventional wet-spinning processes. Manganese dioxide (MnO2) nanoflakes were deposited onto the as-prepared CNT fibers by electrodeposition to form highly flexible nanocomposites fibers. As-prepared fibers were characterized by electron microscopy, electrical, mechanical, and electrochemical measurements. It was found that the specific capacitance was over 152 F g-1 (156 F cm-3), which is about 500% higher than the multi-walled carbon nanotube/MnO2 yarn-based supercapacitors. The measured energy density was 14.1 Wh kg-1 at a power density of 202 W kg-1. These values are 232% and 32% higher than the energy density and power density of MWNT/MnO2 yarn-based supercapacitor, respectively. It was found that the cyclic retention ability was more stable, revealing a 16% increase after 10 000 cycles. Such substantial enhancements of key properties of the hybrid material can be associated with the synergy of CNT and MnO2 nanoparticles in the fiber structure. The use of wet-spun hybrid CNT for fiber-based supercapacitors has been demonstrated.