RESUMO
Transient soluble oligomers of amyloid-ß (Aß) are toxic and accumulate early prior to insoluble plaque formation and cognitive impairment in Alzheimer's disease (AD). Synthetic cyclic D,L-α-peptides (e.g., 1) self-assemble into cross ß-sheet nanotubes, react with early Aß species (1-3 mers), and inhibit Aß aggregation and toxicity in stoichiometric concentrations, in vitro. Employing a semicarbazide as an aza-glycine residue with an extra hydrogen-bond donor to tune nanotube assembly and amyloid engagement, [azaGly6]-1 inhibited Aß aggregation and toxicity at substoichiometric concentrations. High-resolution NMR studies revealed dynamic interactions between [azaGly6]-1 and Aß42 residues F19 and F20, which are pivotal for early dimerization and aggregation. In an AD mouse model, brain positron emission tomography (PET) imaging using stable 64Cu-labeled (aza)peptide tracers gave unprecedented early amyloid detection in 44-d presymptomatic animals. No tracer accumulation was detected in the cortex and hippocampus of 44-d-old 5xFAD mice; instead, intense PET signal was observed in the thalamus, from where Aß oligomers may spread to other brain parts with disease progression. Compared with standard 11C-labeled Pittsburgh compound-B (11C-PIB), which binds specifically fibrillar Aß plaques, 64Cu-labeled (aza)peptide gave superior contrast and uptake in young mouse brain correlating with Aß oligomer levels. Effectively crossing the blood-brain barrier (BBB), peptide 1 and [azaGly6]-1 reduced Aß oligomer levels, prolonged lifespan of AD transgenic Caenorhabditis elegans, and abated memory and behavioral deficits in nematode and murine AD models. Cyclic (aza)peptides offer novel promise for early AD diagnosis and therapy.
Assuntos
Doença de Alzheimer , Amiloidose , Animais , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Diagnóstico Precoce , Peptídeos beta-Amiloides , Placa Amiloide , Proteínas AmiloidogênicasRESUMO
Promiscuous G protein-coupled receptors (GPCRs) engage multiple Gα subtypes with different efficacies to propagate signals in cells. A mechanistic understanding of Gα selectivity by GPCRs is critical for therapeutic design, since signaling can be restrained by ligand-receptor complexes to preferentially engage specific G proteins. However, details of GPCR selectivity are unresolved. Here, we investigated cognate G protein selectivity using the prototypical promiscuous Gαq/11 and Gα12/13 coupling receptors, angiotensin II type I receptor (AT1R) and prostaglandin F2α receptor (FP), bioluminescence resonance energy transfer-based G protein and pathway-selective sensors, and G protein knockout cells. We determined that competition between G proteins for receptor binding occurred in a receptor- and G protein-specific manner for AT1R and FP but not for other receptors tested. In addition, we show that while Gα12/13 competes with Gαq/11 for AT1R coupling, the opposite occurs for FP, and Gαq-mediated signaling regulated G protein coupling only at AT1R. In cells, the functional modulation of biased ligands at FP and AT1R was contingent upon cognate Gα availability. The efficacy of AT1R-biased ligands, which poorly signal through Gαq/11, increased in the absence of Gα12/13. Finally, we show that a positive allosteric modulator of Gαq/11 signaling that also allosterically decreases FP-Gα12/13 coupling, lost its negative modulation in the absence of Gαq/11 coupling to FP. Together, our findings suggest that despite preferential binding of similar subsets of G proteins, GPCRs follow distinct selectivity rules, which may contribute to the regulation of ligand-mediated G protein bias of AT1R and FP.
Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Receptor Tipo 1 de Angiotensina , Receptores de Prostaglandina , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismoRESUMO
BACKGROUND: Preterm birth is the leading cause of neonatal morbidity and mortality. Studies have shown that interleukin 1 plays a major role in the pathophysiology of preterm birth by inducing the production of proinflammatory mediators and uterine activation proteins leading to labor. More importantly, uteroplacental inflammation, associated with preterm birth parturition pathways, is detrimental to fetal tissues and leads to long-term sequelae. Our group has developed an allosteric antagonist of the interleukin 1 receptor, rytvela, found to be potent and safe in preventing preterm birth by suppressing inflammation via the inhibition of the mitogen-activated protein kinase pathway while preserving the Nuclear factor kappa B pathway (important in immune vigilance). Rytvela has been shown to inhibit inflammatory up-regulation and uterine activation while preserving fetal development. OBJECTIVE: This study aimed to further the preclinical development of rytvela by evaluating its optimal dose and minimal duration of treatment to inhibit the inflammatory cascade, prolong gestation, and promote neonatal outcomes. STUDY DESIGN: Pregnant CD-1 mice were administered with lipopolysaccharide (10 µg, intraperitoneal administration) or interleukin 1 (1 µg/kg, intrauterine administration) on gestational day 16 to induce preterm labor. Rytvela was administered at different doses (0.1, 0.5, 1.0, 2.0, 4.0 mg/kg/d subcutaneously) from gestational days 16 to 18.5. To evaluate the minimal duration of treatment, the mice were administered with rytvela (2 mg/kg/d subcutaneously) for 24, 36, or 48 hours. The rate of prematurity (gestational day <18.5) and neonate survival and weight were evaluated. Gestational tissues were collected at gestational day 17.5 to quantify cytokines, proinflammatory mediators, and uterine activating proteins by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The neonatal lungs and intestines were collected from postnatal days 5 to 7 and analyzed by histology. RESULTS: Rytvela exhibited a dose-response profile and achieved maximum efficacy at a dose of 2 mg/kg/d by reducing 70% of lipopolysaccharide-induced preterm births and 60% of interleukin 1ß-induced preterm births. In addition, rytvela attained maximum efficacy at a dose of 1 mg/kg/d by increasing neonate survival by up to 65% in both models of preterm birth. Rytvela protected fetuses from inflammatory insult as of 24 hours, preserving lung and intestinal integrity, and prevented preterm birth and fetal mortality by 60% and 50%, respectively, as of 36 hours of treatment. CONCLUSION: The maximum efficacy of rytvela was achieved at 2 mg/kg/d with improved birth outcomes and prevented inflammatory up-regulation upon 36 hours (only) of treatment. Rytvela exhibited desirable properties for the safe prevention of preterm birth and fetal protection.
Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Animais , Camundongos , Nascimento Prematuro/prevenção & controle , Lipopolissacarídeos/efeitos adversos , Feto , Inflamação , Anti-Inflamatórios , Interleucina-1RESUMO
Topological mimicry of peptide ß-turn secondary structures has been investigated using a 1,3,5,8-tetrasubstituted 1,3,4-benzotriazepin-2-one scaffold. Approaches were conceived for the synthesis of tetrasubstituted benzotriazepinones from 4-acetyl-3-aminobenzoate based on aza-amino acid chemistry and different orthogonal protection strategies. Installation of an 8-position carboxylate on the aromatic ring enabled a diverse array of substituents to be introduced for mimicry of the i-position residue. Benzotriazepin-2-one crystallization and X-ray analysis demonstrated that in spite the absence of a stereogenic carbon center, the scaffold could serve as type I and I' ß-turn mimics, because pyramidalization of the N3-nitrogen in the benzotriazepin-2-one provides potential for adoptive chirality. 1,3,5,8-Tetrasubstituted 1,3,4-benzotriazepin-2-one scaffolds offer interesting potential for the cost-effective synthesis of nonpeptide ß-turn surrogates for peptide mimicry in various recognition events.
RESUMO
In pursuit of more effective-labor delaying tocolytic agents, the prostaglandin F2α (PGF2α) receptor (FP) modulator PDC113.824 [(6S)-2] represents a potent lead for developing therapy to treat preterm birth. Derivatives of FP modulator (6S)-2 were synthesized, possessing respectively 5- and 7-hydroxyl groups on the indolizidin-2-one amino acid (I2 aa) residue. The effects of the alcohol substituents were examined in a PGF2α-induced myometrial contraction assay. Based on knowledge of dihedral angle values of model I2 aa peptides from X-ray analyses, the results of the study indicate respectively encouraging and limited potential for creating improved tocolytic agents by modifications at the 5- and 7-positions.
Assuntos
Nascimento Prematuro , Tocolíticos , Feminino , Recém-Nascido , Humanos , Tocolíticos/farmacologia , Dinoprosta/farmacologia , Contração Uterina , MiométrioRESUMO
Novel all-hydrocarbon cross-linked aza-stapled peptides were designed and synthesized for the first time by ring-closing metathesis between two aza-alkenylglycine residues. Three aza-stapled peptidic analogues based on the peptide dual inhibitor of p53-MDM2/MDMX interactions were synthesized and screened for biological activities. Among the three aza-stapled peptides, aSPDI-411 displayed increased anti-tumor activity, binding affinities to both MDM2 and MDMX, and cell membrane permeability compared to its linear peptide counterpart.
Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Peptídeos/química , Ligação Proteica , HidrocarbonetosRESUMO
The constrained dipeptide surrogates 5- and 7-hydroxy indolizidin-2-one N-(Boc)amino acids have been synthesized from L-serine as a chiral educt. A linear precursor ∆4-unsaturated (2S,8S)-2,8-bis[N-(Boc)amino]azelic acid was prepared in five steps from L-serine. Although epoxidation and dihydroxylation pathways gave mixtures of hydroxy indolizidin-2-one diastereomers, iodolactonization of the ∆4-azelate stereoselectively delivered a lactone iodide from which separable (5S)- and (7S)-hydroxy indolizidin-2-one N-(Boc)amino esters were synthesized by sequences featuring intramolecular iodide displacement and lactam formation. X-ray analysis of the (7S)-hydroxy indolizidin-2-one N-(Boc)amino ester indicated that the backbone dihedral angles embedded in the bicyclic ring system resembled those of the central residues of an ideal type II' ß-turn indicating the potential for peptide mimicry.
Assuntos
Dipeptídeos/química , Aminoácidos/síntese química , Aminoácidos/química , Técnicas de Química Sintética , Indolizinas/química , Modelos Moleculares , Conformação Molecular , Mimetismo Molecular , Estrutura Molecular , Compostos Orgânicos/química , Peptídeos/química , EstereoisomerismoRESUMO
The almiramide N-methylated lipopeptides exhibit promising activity against trypanosomatid parasites. A structure-activity relationship study has been performed to examine the influences of N-methylation and conformation on activity against various strains of leishmaniasis protozoan and on cytotoxicity. The synthesis and biological analysis of twenty-five analogs demonstrated that derivatives with a single methyl group on either the first or fifth residue amide nitrogen exhibited greater activity than the permethylated peptides and relatively high potency against resistant strains. Replacement of amino amide residues in the peptide, by turn inducing α amino γ lactam (Agl) and N-aminoimidazalone (Nai) counterparts, reduced typically anti-parasitic activity; however, peptide amides possessing Agl residues at the second residue retained significant potency in the unmethylated and permethylated series. Systematic study of the effects of methylation and turn geometry on anti-parasitic activity indicated the relevance of an extended conformer about the central residues, and conformational mobility by tertiary amide isomerization and turn geometry at the extremities of the active peptides.
Assuntos
Leishmania/efeitos dos fármacos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Amidas/química , Isomerismo , Metilação , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Sets of azabicyclo[X.Y.0]alkanone amino acids have been effectively used to identify active conformers in peptide-based drug discovery, but they usually require multiple routes to synthesize. Employing a common method from the same nine-membered unsaturated lactam precursor, we developed conditions for stereo- and regiochemical transannular cyclizations to synthesize three different indolizidin-2- and 9-one amino acid (I2aa and I9aa) analogues. For example, (3S,5R,6R,9S)- and (3S,5S,6S,9S)-I2aa diastereomers were prepared from hexahydro-1H-azonines by using iodine in THF and in MeCN with DIB as an additive. The regioselectivity of the transannular cyclization was influenced by amine protection to favor the synthesis of the I9aa isomer. Moreover, side chains were added onto the I2aa and I9aa ring systems by way of olefin intermediates that underwent Pd-catalyzed C-H bond activation and allylic oxidation.
RESUMO
Progressive cystic kidney degeneration underlies diverse renal diseases, including the most common cause of kidney failure, autosomal dominant Polycystic Kidney Disease (PKD). Genetic analyses of patients and animal models have identified several key drivers of this disease. The precise molecular and cellular changes underlying cystogenesis remain, however, elusive. Drosophila mutants lacking the translational regulator Bicaudal C (BicC, the fly ortholog of vertebrate BICC1 implicated in renal cystogenesis) exhibited progressive cystic degeneration of the renal tubules (so called "Malpighian" tubules) and reduced renal function. The BicC protein was shown to bind to Drosophila (d-) myc mRNA in tubules. Elevation of d-Myc protein levels was a cause of tubular degeneration in BicC mutants. Activation of the Target of Rapamycin (TOR) kinase pathway, another common feature of PKD, was found in BicC mutant flies. Rapamycin administration substantially reduced the cystic phenotype in flies. We present new mechanistic insight on BicC function and propose that Drosophila may serve as a genetically tractable model for dissecting the evolutionarily-conserved molecular mechanisms of renal cystogenesis.
Assuntos
Proteínas de Drosophila/genética , Doenças Renais Policísticas/etiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Animais Geneticamente Modificados , Cistos , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Túbulos de Malpighi/patologia , Mutação , Doenças Renais Policísticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para CimaRESUMO
γ,δ-Unsaturated ketones, so-called homoallylic ketones, have served as versatile building blocks for the synthesis of a variety of heterocycles, carbocycles, natural products, and reactive intermediates. Procured by a variety of processes, including conjugate addition of vinyl organometallic reagents to unsaturated ketones, allylation of silyl enol ethers, and rearrangements, homoallylic ketones are often synthesized by step-intensive methods. The cascade addition of 2 equiv of vinyl Grignard reagent to a carboxylate was reported by the Lubell laboratory in 2003 to give effective access to homoallylic ketones from a variety of aromatic, aliphatic, and α-amino methyl esters. Employing readily accessible vinyl magnesium halides in the presence of a catalytic amount of copper salt, this cascade reaction provides high yields of homoallylic ketones with minimal side product by a process featuring the assembly and collapse of a tetrahedral intermediate with expulsion of alkoxide ion, followed by conjugate addition to the resulting enone. Application of the cascade reaction to the synthesis of various homoallylic ketones has provided versatile building blocks for the synthesis of targets for different applications. For example, by employing (hetero)aryl di- and tricarboxylates as precursors, copper-catalyzed cascade additions have provided donor-acceptor and star-shaped monomers for optical-electronic materials. Amino ester starting materials have given homoallylic ketones for the synthesis of various peptidomimetics, including heteroarylalanines, hydroxyethylene isoesters, and diazepinone turn mimics. Moreover, anthranilate has served as building block to prepare various pyrrole, quinoline, benzodiazepine, and benzotriazepine heterocyles. In addition, cascade additions on hydroxyprolinates have given access to bipyrrole precursors of the prodigiosin family of natural products. In the interest to highlight the utility of the copper-catalyzed cascade addition of vinyl Grignard reagents to carboxylates, this Account provides details on the broad scope of substrates that deliver homoallylic ketone products as well as an overview of the wide range of applications in which this method may impact including materials and peptide science, heterocycle and natural product synthesis, and medicinal chemistry.
RESUMO
CD36 is a multiligand receptor involved in lipid metabolism. We investigated the mechanisms underlying the cardioprotective effect of CP-3(iv), an azapeptide belonging to a new class of selective CD36 ligands. The role of CP-3(iv) in mediating cardioprotection was investigated because CD36 signaling leads to activation of peroxisome proliferator-activated receptor-γ, a transcriptional regulator of adiponectin. CP-3(iv) pretreatment reduced infarct size by 54% and preserved hemodynamics in C57BL/6 mice subjected to 30 min coronary ligation and reperfusion but had no effect in CD36-deficient mice. The effects of CP-3(iv) were associated with an increase in circulating adiponectin levels, epididymal fat adiponectin gene expression, and adiponectin transcriptional regulators ( Pparg, Cebpb, Sirt1) after 6 h of reperfusion. Reduced myocardial oxidative stress and apoptosis were observed along with an increase in expression of myocardial adiponectin target proteins, including cyclooxygenase-2, phospho-AMPK, and phospho-Akt. Moreover, CP-3(iv) increased myocardial performance in isolated hearts, whereas blockade of adiponectin with an anti-adiponectin antibody abrogated it. CP-3(iv) exerts cardioprotection against myocardial ischemia and reperfusion (MI/R) injury and dysfunction, at least in part, by increasing circulating and myocardial adiponectin levels. Hence, both paracrine and endocrine effects of adiponectin may contribute to reduced reactive oxygen species generation and apoptosis after MI/R, in a CD36-dependent manner.-Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., Lubell, W. D., Carpentier, A. C., Burelle, Y., Ong, H., Marleau, S. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice.
Assuntos
Adiponectina/biossíntese , Antígenos CD36/agonistas , Cardiotônicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Peptídeos/farmacologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacosRESUMO
Continuous flow chemistry has improved efficiency in the Heumann indole process. 3-Substituted indoles were prepared by three flow steps performed in succession in better overall yield and shorter reaction times relative to their batch counterparts. Novel 3-alkyl and 3-methoxyindoles were synthesized from their corresponding amino ketone and ester precursors by flow sequences featuring base-free alkylation with methyl bromoacetate in DMF, saponification, and cyclization with acetic anhydride and Et3N.
RESUMO
Solid-phase chemistry for the synthesis and Diels-Alder reaction of Fmoc-protected azopeptides has been developed and used to construct aza-pipecolyl (azaPip) peptides. Considering their ability to induce electronic and structural constraints that favor cis-amide isomer geometry and type VI ß-turn conformation in model peptides, azaPip residues have now been introduced into biologically relevant targets by this enabling synthetic method. Turn conformers were shown to be important for receptor affinity, selectivity, and activity by employing azaPip residues to study the conformational requirements of opioid and cluster of differentiation 36 receptor peptide ligands.
RESUMO
Preterm birth (PTB) is commonly accompanied by in utero fetal inflammation, and existing tocolytic drugs do not target fetal inflammatory injury. Of the candidate proinflammatory mediators, IL-1 appears central and is sufficient to trigger fetal loss. Therefore, we elucidated the effects of antenatal IL-1 exposure on postnatal development and investigated two IL-1 receptor antagonists, the competitive inhibitor anakinra (Kineret) and a potent noncompetitive inhibitor 101.10, for efficacy in blocking IL-1 actions. Antenatal exposure to IL-1ß induced Tnfa, Il6, Ccl2, Pghs2, and Mpges1 expression in placenta and fetal membranes, and it elevated amniotic fluid IL-1ß, IL-6, IL-8, and PGF2α, resulting in PTB and marked neonatal mortality. Surviving neonates had increased Il1b, Il6, Il8, Il10, Pghs2, Tnfa, and Crp expression in WBCs, elevated plasma levels of IL-1ß, IL-6, and IL-8, increased IL-1ß, IL-6, and IL-8 in fetal lung, intestine, and brain, and morphological abnormalities: e.g., disrupted lung alveolarization, atrophy of intestinal villus and colon-resident lymphoid follicle, and degeneration and atrophy of brain microvasculature with visual evoked potential anomalies. Late gestation treatment with 101.10 abolished these adverse outcomes, whereas Kineret exerted only modest effects and no benefit for gestation length, neonatal mortality, or placental inflammation. In a LPS-induced model of infection-associated PTB, 101.10 prevented PTB, neonatal mortality, and fetal brain inflammation. There was no substantive deviation in postnatal growth trajectory or adult body morphometry after antenatal 101.10 treatment. The results implicate IL-1 as an important driver of neonatal morbidity in PTB and identify 101.10 as a safe and effective candidate therapeutic.
Assuntos
Encéfalo/imunologia , Desenvolvimento Fetal/efeitos dos fármacos , Inflamação/imunologia , Interleucina-1beta/imunologia , Placenta/imunologia , Gravidez/imunologia , Nascimento Prematuro/imunologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/uso terapêutico , Placenta/efeitos dos fármacos , Nascimento Prematuro/tratamento farmacológicoRESUMO
N-Alkylation and N-acylation of the prostaglandin-F2α allosteric modulator l-PDC31 were performed to install various alkyl, PEG and isoprenoid groups onto the l-enantiomer of the peptide. Among the different bio-conjugates studied, the N-dodecyl analog reduced prostaglandin-F2α-induced mouse myometrium contractions ex vivo. Furthermore, N-dodecyl-l-PDC31 exhibited improved stability in a mouse serum assay, likely due to protection from protease degradation by the lipid chain.
Assuntos
Proteína Básica da Mielina , Miométrio/metabolismo , Fragmentos de Peptídeos , Contração Uterina/efeitos dos fármacos , Animais , Dinoprosta/química , Feminino , Camundongos , Proteína Básica da Mielina/síntese química , Proteína Básica da Mielina/química , Proteína Básica da Mielina/farmacologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologiaRESUMO
Mimicry of bioactive conformations is critical for peptide-based medicinal chemistry because such peptidomimetics may augment stability, enhance affinity, and increase specificity. Azapeptides are peptidomimetics in which the α-carbon(s) of one or more amino acid residues are substituted by nitrogen. The resulting semicarbazide analogues have been shown to reinforce ß-turn conformation through the combination of lone pair-lone pair repulsion of the adjacent hydrazine nitrogen and urea planarity. Substitution of a semicarbazide for an amino amide residue in a peptide may retain biological activity and add benefits such as improved metabolic stability. The applications of azapeptides include receptor ligands, enzyme inhibitors, prodrugs, probes, and imaging agents. Moreover, azapeptides have proven therapeutic utility. For example, the aza-glycinamide analogue of the luteinizing hormone-releasing hormone analogue Zoladex is a potent long-acting agonist currently used in the clinic for the treatment of prostate and breast cancer. However, the use of azapeptides was hampered by tedious solution-phase synthetic routes for selective hydrazine functionalization. A remarkable stride to overcome this bottleneck was made in 2009 through the introduction of the submonomer procedure for azapeptide synthesis, which enabled addition of diverse side chains onto a common semicarbazone intermediate, providing a means to construct azapeptide libraries by solution- and solid-phase chemistry. In brief, aza residues are introduced into the peptide chain using the submonomer strategy by semicarbazone incorporation, deprotonation, N-alkylation, and orthogonal deprotection. Amino acylation of the resulting semicarbazide and elongation gives the desired azapeptide. Since the initial report, a number of chemical transformations have taken advantage of the orthogonal chemistry of semicarbazone residues (e.g., Michael additions and N-arylations). In addition, libraries have been synthesized from libraries by diversification of aza-propargylglycine (e.g., A3 coupling reactions, [1,3]-dipolar cycloadditions, and 5-exo-dig cyclizations) and aza-chloroalkylglycine residues. In addition, oxidation of aza-glycine residues has afforded azopeptides that react in pericyclic reactions (e.g., Diels-Alder and Alder-ene chemistry). The bulk of these transformations of aza-glycine residues have been developed by the Lubell laboratory, which has applied such chemistry in the synthesis of ligands with promising biological activity for treating diseases such as cancer and age-related macular degeneration. Azapeptide analogues of growth hormone-releasing peptide-6 (His-d-Trp-Ala-Trp-d-Phe-Lys-NH2, GHRP-6) have for example been pursued as ligands of the cluster of differentiation 36 receptor (CD36) and show promising activity for the development of treatments for angiogenesis-related diseases, such as age-related macular degeneration, as well as for atherosclerosis. Azapeptides have also been employed to make a series of conformationally constrained second mitochondria-derived activator of caspase (Smac) mimetics that exhibit promising apoptosis-inducing activity in cancer cells. The synthesis of cyclic azapeptide derivatives was used to make an aza scan to study the conformation-activity relationships of the anticancer agent cilengitide, cyclo(RGDf-N(Me)V), and its parent counterpart cyclo(RGDfV), which exhibit potency against human tumor metastasis and tumor-induced angiogenesis. Innovations in the synthesis and application of azapeptides will be presented in this Account, focusing on the creation and use of side-chain diversity in medicinal chemistry.
Assuntos
Compostos Aza/química , Peptídeos/síntese química , Aminoácidos/química , Ciclização , Peptídeos/químicaRESUMO
Enantiomerically pure 4-vinylproline (Vyp) was synthesized by a five-step approach from N-(Boc)iodo-alanine (2) featuring copper-catalyzed SN2' substitution of the corresponding zincate onto ( Z)-1,4-dichlorobut-2-ene to prepare methyl 2- N-(Boc)amino-4-(chloromethyl)hexenoate (3). Intra- and intermolecular displacement of the chloride provided respectively Vyp and methyl 2- N-(Boc)amino-4-(azidomethyl)hexenoate (7) suitable for the synthesis of constrained peptide analogs.
RESUMO
A novel approach for the synthesis of head-to-tail cyclic peptides has been developed and used to prepare two mimics of the urotensin II-related peptide (URP) cyclic core. Mimics 1 and 2 (c[Trp-Lys-Tyr-Gly-ψ(triazole)-Gly] and c[Phe-Trp-Lys-Tyr-Gly-ψ(triazole)-Gly]) were respectively prepared using a combination of solid- and solution-phase synthesis. The silyl-based alkyne-modifying (SAM) linker enabled installation of C-terminal alkyne and N-terminal azide moieties onto linear peptide precursors, which underwent head-to-tail copper-catalyzed azide-alkyne cycloaddition (CuAAC) in solution. In an aortic ring contraction assay, neither 1 nor 2 exhibited agonist activity; however, both inhibited selectively URP- but not UII-mediated vasoconstriction. The core phenylalanine residue was shown to be important for enhancing modulatory activity of the urotensinergic system.
Assuntos
Peptídeos Cíclicos/síntese química , Urotensinas/síntese química , Amidas/síntese química , Amidas/química , Conformação Molecular , Peptídeos Cíclicos/química , Urotensinas/químicaRESUMO
An aza-amino acid scan of peptide inhibitors of the chromobox homolog 7 (CBX7) was performed to study the conformational requirements for affinity to the methyllysine reader protein. Twelve azapeptide analogues were prepared using three different approaches employing respectively N-(Fmoc)aza-amino acid chlorides and submonomer azapeptide synthesis to install systematically aza-residues at the first four residues of the peptide, as well as to provide aza-lysine residues possessing saturated and unsaturated side chains. The aza-peptide ligands were evaluated in a chromobox homolog 7 binding assay, providing useful insight into structural requirements for affinity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.