Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 81, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827578

RESUMO

BACKGROUND: Phosphonates derivatives are in the area of interests because of their unique chemical-physical features. These compounds manifest variety of biological interactions within the sensitive living cells, including impact on particular enzymes activities. Biological "cause and effect" interactions are based upon the specific matching between the structures and/or compounds and this is usually the result of proper optical configurations of particular chiral moieties. Presented research is targeted to the phosphonates with the heteroatom incorporated in their side functionalities. Such molecules are described as possible substrates of bioconversion for the first time lately and this field is not fully explored. RESULTS: Presented research is targeted to the synthesis of pure hetero-phosphonates enantiomers. The catalytic activity of yeasts and moulds were tested towards two substrates: the thienyl and imidazole phosphonates to resolve their racemic mixtures. Biotransformations conditions differed depending on the outcome, what included changing of following parameters: type of cultivation media, bioprocess duration (24-72 h), additional biocatalyst pre-treatment (24-48 h starvation step triggering the secondary metabolism). (S)-1-amino-1-(3-thienyl)methylphosphonate was produced with the assistance of R. mucilaginosa or A. niger (e.e. up to 98% and yield up to 100%), starting from the 3 mM of substrate racemic mixture. Bioconversion of racemic mixture of 3 mM of (1-amino-1-(4-imidazole)methylphosphonic acid) resulted in the synthesis of S-isomer (up to 95% of e.e.; 100% of yield) with assistance of R. mucilaginosa. 24 h biotransformation was conducted with biomass preincubated under 48-hour starvation conditions. Such stereoselective resolution of the racemic mixtures of substrates undergoes under kinetic control with the conversion of one from the enantiomers. CONCLUSIONS: Composition of the culturing media and pre-incubation in conditions of nutrient deficiency were significant factors influencing the results of kinetic resolution of racemic mixtures of phosphonic substrates and influencing the economic side of the biocatalysis e.g. by determining the duration of whole biocatalytic process.


Assuntos
Fungos/metabolismo , Organofosfonatos/metabolismo , Biocatálise , Biotransformação , Meios de Cultura , Estrutura Molecular , Estereoisomerismo
2.
Front Chem ; 8: 589720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262971

RESUMO

Rhodotorula mucilaginosa was successfully applied as a biocatalyst for the enantioselective resolution of the racemic mixtures of heteroatom phosphonates derivatives, resulting in receiving the following enantiomers: (S)-1-amino-1(2-thienyl)methylphosphonic acid (Product 1) and (R)-1-amino-1-(3'pirydyl) methylphosphonic acid (Product 2). Biological synthesis of both products is reported for the first time. Pure (S)-1-amino-1-(2-thienyl)methylphosphonic acid (Product 1) was isolated with a conversion degree of 50% after 24 h of biotransformation was conducted on a laboratory scale under moderate conditions (1.55 mM of substrate 1, 100 mL of distilled water, 135 rpm, 25°C; Method A). The scale was enlarged to semi-preparative one, using a simplified flow-reactor (Method C; 3.10 mM of substrate 1) and immobilized biocatalyst. The product was isolated with a conversion degree of 50% just after 4 h of biotransformation. Amino-1-(3'pirydyl)methylphosphonic acid (Substrate 2) was converted according to novel procedure, by the immobilized biocatalyst - Rhodotorula mucilaginosa. The process was carried out under moderate conditions (3.19 mM - substrate 2 solution; Method C1) with the application of a simplified flow reactor system, packed with the yeasts biomass entrapped in 4% agar-agar solution. Pure (R)-amino-1-(3'pirydyl)methylphosphonic (50% of conversion degree) was received within only 48 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA