Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164235

RESUMO

A widely disseminated native species from Australia, Acacia mearnsii, which is mainly cultivated in Brazil and South Africa, represents a rich source of natural tannins used in the tanning process. Many flowers of the Acacia species are used as sources of compounds of interest for the cosmetic industry, such as phenolic compounds. In this study, supercritical fluid extraction was used to obtain non-volatile compounds from A. mearnsii flowers for the first time. The extract showed antimicrobial activity and the presence of p-anisic acid, a substance with industrial and pharmaceutical applications. The fractionation of the extract was performed using a chromatographic column and the fraction containing p-anisic acid presented better minimum inhibitory concentration (MIC) results than the crude extract. Thus, the extraction process was optimized to maximize the p-anisic acid extraction. The response surface methodology and the Box-Behnken design was used to evaluate the pressure, temperature, the cosolvent, and the influence of the particle size on the extraction process. After the optimization process, the p-anisic acid yield was 2.51% w/w and the extraction curve was plotted as a function of time. The simulation of the extraction process was performed using the three models available in the literature.


Assuntos
Acacia/química , Bactérias/efeitos dos fármacos , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/normas , Etanol/química , Éteres de Hidroxibenzoatos/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Flores/química , Éteres de Hidroxibenzoatos/isolamento & purificação , Modelos Teóricos , Extratos Vegetais/isolamento & purificação
2.
Adv Exp Med Biol ; 982: 203-226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551789

RESUMO

Cardiac tissue responds to long-term hemodynamic load through initiation of a hypertrophic remodeling program. Importantly, if not counteracted this response will eventually lead to organ failure. Cardiac hypertrophic adaptations are complex, and involve multiple cellular events and the mechanisms underlying the development of cardiac hypertrophy are not well understood. Mitochondrial dysfunction has been indicated as a potential and important player in the development of cardiac hypertrophy. Additionally, substantial evidence shows that a significant portion of mitochondrial processes, necessary for normal cardiomyocyte physiology, are impacted by these hypertrophic changes. In this chapter, we will present and discuss the adaptations and changes in the mitochondrial electron transport system, mitochondrial metabolism, mitochondrial biogenesis, oxidative stress, the opening of the mitochondrial permeability transition pore following hypertrophic stimuli, as well as, review the various drugs (targeting mitochondria) that can be used in treatment of cardiac hypertrophy.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cardiomegalia/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Humanos , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/patologia , Biogênese de Organelas , Estresse Oxidativo
3.
Chem Biodivers ; 12(9): 1339-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26363878

RESUMO

Baccharis is a widespread genus belonging to the Asteraceae family that includes almost 400 species exclusively from the Americas. Even when studied in detail, the taxonomic classification among species from this genus is not yet fully defined. Within the framework of our study of the volatile composition of the Baccharis genus, four species (B. trimera, B. milleflora, B. tridentata, and B. uncinella) were collected from the 'Campos de Cima da Serra' highlands of the Brazilian state of Rio Grande do Sul. The aerial parts were dried and extracted by the simultaneous distillation extraction (SDE) procedure. This is the first time that SDE has been applied to obtain and compare the volatile-extract composition in the Baccharis genus. Characterization of the volatile extracts allowed the identification of 180 peaks with many coeluting components; these latter being detailed for the first time for this genus. The multivariate statistical analyses allowed separating the volatile extracts of the four populations of Baccharis into two separate groups. The first one included the B. milleflora, B. trimera, and B. uncinella volatile extracts. The three species showed a high degree of similarity in their volatile composition, which was characterized by the presence of high contents of sesquiterpene compounds, in particular of spathulenol. The second group comprised the extract of B. tridentata, which contained α-pinene, ß-pinene, limonene, and (E)-ß-ocimene in high amounts.


Assuntos
Baccharis/química , Odorantes/análise , Extratos Vegetais/química , Compostos Orgânicos Voláteis/análise , Monoterpenos Acíclicos , Alcenos/análise , Alcenos/isolamento & purificação , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Compostos Bicíclicos com Pontes/isolamento & purificação , Análise por Conglomerados , Cicloexenos/análise , Cicloexenos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Monoterpenos/análise , Monoterpenos/isolamento & purificação , Análise de Componente Principal , Terpenos/análise , Terpenos/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação
4.
Free Radic Res ; 58(4): 293-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630026

RESUMO

Calorie restriction is a nutritional intervention that reproducibly protects against the maladaptive consequences of cardiovascular diseases. Pathological cardiac hypertrophy leads to cellular growth, dysfunction (with mitochondrial dysregulation), and oxidative stress. The mechanisms behind the cardiovascular protective effects of calorie restriction are still under investigation. In this study, we show that this dietetic intervention prevents cardiac protein elevation, avoids fetal gene reprogramming (atrial natriuretic peptide), and blocks the increase in heart weight per tibia length index (HW/TL) seen in isoproterenol-induced cardiac hypertrophy. Our findings suggest that calorie restriction inhibits cardiac pathological growth while also lowering mitochondrial reverse electron transport-induced hydrogen peroxide formation and improving mitochondrial content. Calorie restriction also attenuated the opening of the Ca2+-induced mitochondrial permeability transition pore. We also found that calorie restriction blocked the negative correlation of antioxidant enzymes (superoxide dimutase and glutatione peroxidase activity) and HW/TL, leading to the maintenance of protein sulphydryls and glutathione levels. Given the nature of isoproterenol-induced cardiac hypertrophy, we investigated whether calorie restriction could alter cardiac beta-adrenergic sensitivity. Using isolated rat hearts in a Langendorff system, we found that calorie restricted hearts have preserved beta-adrenergic signaling. In contrast, hypertrophic hearts (treated for seven days with isoproterenol) were insensitive to beta-adrenergic activation using isoproterenol (50 nM). Despite protecting against cardiac hypertrophy, calorie restriction did not alter the lack of responsiveness to isoproterenol in isolated hearts harvested from isoproterenol-treated rats. These results suggest (through a series of mitochondrial, oxidative stress, and cardiac hemodynamic studies) that calorie restriction possesses beneficial effects against hypertrophic cardiomyopathy.


Assuntos
Cálcio , Restrição Calórica , Estresse Oxidativo , Animais , Ratos , Cálcio/metabolismo , Masculino , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Transporte de Elétrons , Isoproterenol , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Ratos Sprague-Dawley
5.
J Physiol Biochem ; 78(1): 283-294, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35023023

RESUMO

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.


Assuntos
Restrição Calórica , Lipidômica , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Humanos , Peróxido de Hidrogênio/metabolismo , Isoproterenol/metabolismo , Isoproterenol/toxicidade , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo
6.
Eur J Pharmacol ; 908: 174379, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34324857

RESUMO

Mitochondrial ATP-sensitive potassium channels (mitoKATP) locate in the inner mitochondrial membrane and possess protective cellular properties. mitoKATP opening-induced cardioprotection (using the pharmacological agent diazoxide) is preventable by antagonists, such as glibenclamide. However, the mechanisms of action of these drugs and how mitoKATP respond to them are poorly understood. Here, we show data that reinforce the existence of a mitochondrial sulfonylurea receptor (mitoSUR) as part of the mitoKATP. We also show how diazoxide and glibenclamide compete for the same binding site in mitoSUR. A glibenclamide analog that lacks its cyclohexylurea portion (IMP-A) loses its ability to inhibit diazoxide-induced swelling. These results suggest that the cyclohexylureia portion of glibenclamide is indispensable for mitoKATP inhibition. Moreover, IMP-A did not suppress diazoxide-induced preconditioning (EC50 10.66 µM) in a rat model of a cardiac ischemia/reperfusion. Importantly, glibenclamide inhibited both diazoxide-induced cardioprotection (IC50 86 nM). We suggest that IMP-A must be used with caution since we found this drug possesses significant inhibitory effects on mitochondrial respiration. We characterized the binding of glibenclamide and diazoxide using a molecular simulation (docking) approach. Using the molecular structure of the ATP binding protein ABCB8 (pointed by others as the mitoSUR) we demonstrate that glibenclamide competitively inhibits diazoxide actions. This was reinforced (pharmacologically) in a competitive antagonism test. Taken together, these results bring valuable and novel insights into the pharmacological/biochemical aspects of mitokATP activation and cardioprotection. This study may lead to the discovery of novel therapeutic strategies that may impact ischemia-reperfusion injury.


Assuntos
Diazóxido , Canais KATP , Animais , Glibureto , Simulação de Acoplamento Molecular , Ratos
7.
Curr Mol Pharmacol ; 13(1): 76-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31340743

RESUMO

BACKGROUND: Cardiac hypertrophy involves marked wall thickening or chamber enlargement. If sustained, this condition will lead to dysfunctional mitochondria and oxidative stress. Mitochondria have ATP-sensitive K+ channels (mitoKATP) in the inner membrane that modulate the redox status of the cell. OBJECTIVE: We investigated the in vivo effects of mitoKATP opening on oxidative stress in isoproterenol- induced cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced in Swiss mice treated intraperitoneally with isoproterenol (ISO - 30 mg/kg/day) for 8 days. From day 4, diazoxide (DZX - 5 mg/kg/day) was used in order to open mitoKATP (a clinically relevant therapy scheme) and 5-hydroxydecanoate (5HD - 5 mg/kg/day) or glibenclamide (GLI - 3 mg/kg/day) were used as mitoKATP blockers. RESULTS: Isoproterenol-treated mice had elevated heart weight/tibia length ratios (HW/TL). Additionally, hypertrophic hearts had elevated levels of carbonylated proteins and Thiobarbituric Acid Reactive Substances (TBARS), markers of protein and lipid oxidation. In contrast, mitoKATP opening with DZX avoided ISO effects on gross hypertrophic markers (HW/TL), carbonylated proteins and TBARS, in a manner reversed by 5HD and GLI. Moreover, DZX improved mitochondrial superoxide dismutase activity. This effect was also blocked by 5HD and GLI. Additionally, ex vivo treatment of isoproterenol- induced hypertrophic cardiac tissue with DZX decreased H2O2 production in a manner sensitive to 5HD, indicating that this drug also acutely avoids oxidative stress. CONCLUSION: Our results suggest that diazoxide blocks oxidative stress and reverses cardiac hypertrophy. This pharmacological intervention could be a potential therapeutic strategy to prevent oxidative stress associated with cardiac hypertrophy.


Assuntos
Cardiomegalia/tratamento farmacológico , Diazóxido/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Canais de Potássio/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Diazóxido/farmacologia , Avaliação Pré-Clínica de Medicamentos , Transporte de Íons/efeitos dos fármacos , Isoproterenol/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Potássio/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
8.
J Nutr Biochem ; 62: 87-94, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30286377

RESUMO

Oxidative stress has been implicated in the pathogenesis of cardiac hypertrophy and associated heart failure. Cardiac tissue grows in response to pressure or volume overload, leading to wall thickening or chamber enlargement. If sustained, this condition will lead to a dysfunctional cardiac tissue and oxidative stress. Calorie restriction (CR) is a powerful intervention to improve health and delay aging. Here, we investigated whether calorie restriction in mice prevented isoproterenol-induced cardiac hypertrophy in vivo by avoiding reactive oxygen species (ROS) production and maintaining antioxidant enzymatic activity. Additionally, we investigated the involvement of mitochondrial ATP-sensitive K+ channels (mitoKATP) in cardiac hypertrophy. CR was induced by 40% reduction in daily calorie ingestion. After 3 weeks on CR or ad libitum (Control) feeding, Swiss mice were treated intraperitoneally with isoproterenol (30 mg/kg per day) for 8 days to induce hypertrophy. Isoproterenol-treated mice had elevated heart weight/tibia length ratios and cardiac protein levels. These gross hypertrophic markers were significantly reduced in CR mice. Cardiac tissue from isoproterenol-treated CR mice also produced less H2O2 and had lower protein sulfydryl oxidation. Additionally, calorie restriction blocked hypertrophic-induced antioxidant enzyme (catalase, superoxide dismutase and glutathione peroxidase) activity repression during cardiac hypertrophy. MitoKATP opening was repressed in isolated mitochondria from hypertrophic hearts, in a manner sensitive to calorie restriction. Finally, mitoKATP inhibition significantly blocked the protective effects of calorie restriction. Altogether, our results suggest that CR improves intracellular redox balance during cardiac hypertrophy and prevents this process in a mechanism involving mitoKATP activation.


Assuntos
Restrição Calórica , Cardiomegalia/dietoterapia , Canais de Potássio/metabolismo , Animais , Antioxidantes/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Enzimas/metabolismo , Glibureto/farmacologia , Peróxido de Hidrogênio/metabolismo , Isoproterenol/efeitos adversos , Masculino , Camundongos , Estresse Oxidativo , Bloqueadores dos Canais de Potássio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
9.
Chem Biol Interact ; 261: 50-55, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27867086

RESUMO

Pathological cardiac hypertrophy is characterized by wall thickening or chamber enlargement of the heart in response to pressure or volume overload, respectively. This condition will, initially, improve the organ contractile function, but if sustained will render dysfunctional mitochondria and oxidative stress. Mitochondrial ATP-sensitive K+ channels (mitoKATP) modulate the redox status of the cell and protect against several cardiac insults. Here, we tested the hypothesis that mitoKATP opening (using diazoxide) will avoid isoproterenol-induced cardiac hypertrophy in vivo by decreasing reactive oxygen species (ROS) production and mitochondrial Ca2+-induced swelling. To induce cardiac hypertrophy, Swiss mice were treated intraperitoneally with isoproterenol (30 mg/kg/day) for 8 days. Diazoxide (5 mg/kg/day) was used to open mitoKATP and 5-hydroxydecanoate (5 mg/kg/day) was administrated as a mitoKATP blocker. Isoproterenol-treated mice had elevated heart weight/tibia length ratios and increased myocyte cross-sectional areas. Additionally, hypertrophic hearts produced higher levels of H2O2 and had lower glutathione peroxidase activity. In contrast, mitoKATP opening with diazoxide blocked all isoproterenol effects in a manner reversed by 5-hydroxydecanoate. Isolated mitochondria from Isoproterenol-induced hypertrophic hearts had increased susceptibility to Ca2+-induced swelling secondary to mitochondrial permeability transition pore opening. MitokATP opening was accompanied by lower Ca2+-induced mitochondrial swelling, an effect blocked by 5-hydroxydecanoate. Our results suggest that mitoKATP opening negatively regulates cardiac hypertrophy by avoiding oxidative impairment and mitochondrial damage.


Assuntos
Cardiomegalia/tratamento farmacológico , Diazóxido/uso terapêutico , Mitocôndrias Cardíacas/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Diazóxido/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Isoproterenol , Masculino , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Canais de Potássio/metabolismo
10.
Braz. arch. biol. technol ; 63: e20190213, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132272

RESUMO

Abstract This study aims to find the best conditions for the extraction of Zingiber officinale essential oil using the supercritical fluid extraction (SFE), steam distillation (SD) and hydrodistillation (HD) techniques, regarding the maximum oil yield. For the HD technique is evaluated the best ratio between plant mass and water volume and for SFE and SD the pressure condition was investigated. Principal Component Analysis (PCA) was used to evaluate the similarity between the composition of the essential oil in different pressures and extraction methods. The experimental extraction curve was plotted and three different mathematical models were used to fit the data for SD and SFE methods, obtaining the relevant mass transfer parameters. The essential oil compounds were identified by gas chromatography coupled with mass spectrometry (GC-MS), being α-zingiberene the main component with different contents (from 11.9 to 28.9%). The best condition for the SFE was 100 bar, 40 °C (0.0508 goil/gplant) with 19.34% of α-zingiberene; for the SD, 3 bar (133 °C) (0.00616 goil/gplant) with 28.9% of α-zingiberene; and HD, the volume of 750 mL (0.006988 goil/gplant) with 15.70% of α-zingiberene, all measured on a dry basis.


Assuntos
Óleos Voláteis/isolamento & purificação , Zingiber officinale/química , Destilação , Cromatografia com Fluido Supercrítico , Cromatografia Gasosa-Espectrometria de Massas , Modelos Teóricos
11.
Drug Des Devel Ther ; 9: 3067-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26109849

RESUMO

BACKGROUND: The search for new active compounds from the Brazilian flora has intensified in recent years, especially for new drugs with antibiotic potential. Accordingly, the aim of this study was to determine whether riachin has antibiotic activity in itself or is able to modulate the activity of conventional antibiotics. METHODS: A non-cyanogenic cyanoglycoside known as riachin was isolated from Bauhinia pentandra, and was tested alone and in combination with three antibiotics (clindamycin, amikacin, and gentamicin) against multiresistant bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). RESULTS: Riachin did not show significant antibiotic activity when tested alone against any strain (P>0.05). However, when combined with conventional antibiotics, it showed drug-modifying activity against strains of S. aureus exposed to clindamycin (P<0.001) as well as against P. aeruginosa exposed to amikacin (P<0.001). Although riachin did not show direct antibiotic activity, it had synergistic activity when combined with amikacin or clindamycin. The mechanism of action of this synergism is under investigation. CONCLUSION: The results of this work demonstrate that some substances of natural origin can enhance the effectiveness of certain antibiotics, which means a substantial reduction in the drug dose required and possibly in consequent adverse events for patients.


Assuntos
Acrilonitrila/análogos & derivados , Antibacterianos/farmacologia , Bauhinia/química , Glucosídeos/farmacologia , Extratos Vegetais/farmacologia , Acrilonitrila/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
12.
Braz. arch. biol. technol ; 55(4): 613-621, July-Aug. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-645415

RESUMO

The aim of this work was to study the influence of essential oil fractionation on acaricidal activity against the cattle tick Rhipicephalus (Boophilus) microplus. The citronella (Cymbopogon winterianus J.) and pepper tree (Schinus molle L.) essential oils were fractionated by vacuum distillation yielding fractions that were analyzed by the GC/MS. Laboratory tests were carried out to determine the effect of the total essential oil and fractions on larvae of the cattle tick R. (B.) microplus. The fractions 04 and 05 of the C. winterianus essential oil were the most active showing LC50 values of 1.20 and 1.34 μL/mL, respectively. The LC50 of the total oil was 3.30 μL/mL while the effect of the fractions 01, 02 and 03 was less pronounced, with LC50 values of 4.37, 4.24 and 3.49 μL/mL, respectively. The fraction 03 of the S. molle essential oil was the most active showing LC50 value of 8.80 μL/mL while the fractions 01 and 02 did not show toxic effects on the larvae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA