Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.691
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(2): 360-374.e19, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38176410

RESUMO

The very-low-density lipoprotein receptor (VLDLR) comprises eight LDLR type A (LA) domains and supports entry of distantly related alphaviruses, including Eastern equine encephalitis virus (EEEV) and Semliki Forest virus (SFV). Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage more than one LA domain simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection. Whereas all EEEV strains show conservation of two VLDLR-binding sites, the EEEV PE-6 strain and a few other EEE complex members feature a single amino acid substitution that enables binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.


Assuntos
Microscopia Crioeletrônica , Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Receptores de LDL , Animais , Camundongos , Alphavirus/fisiologia , Vírus da Encefalite Equina do Leste/fisiologia , Vírus da Encefalite Equina do Leste/ultraestrutura , Encefalomielite Equina/metabolismo , Cavalos , Ligação Proteica , Receptores de LDL/ultraestrutura
2.
Cell ; 186(19): 4172-4188.e18, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37633267

RESUMO

Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.


Assuntos
Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Retículo Endoplasmático/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Quinases , Ubiquitina-Proteína Ligases , Drosophila melanogaster , Animais
3.
Cell ; 186(13): 2839-2852.e21, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37352836

RESUMO

The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.


Assuntos
Microbioma Gastrointestinal , Ácidos e Sais Biliares , Clostridiales
4.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804831

RESUMO

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Assuntos
Alphavirus , Animais , Humanos , Febre de Chikungunya , Vírus Chikungunya/química , Mamíferos , Receptores Virais/metabolismo
5.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33188777

RESUMO

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Assuntos
Biossíntese de Proteínas , Vírus de RNA/fisiologia , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Transporte de RNA , RNA Viral/genética , Reprodutibilidade dos Testes , Imagem Individual de Molécula , Fatores de Tempo
6.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931734

RESUMO

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Assuntos
Infecções por Coronavirus/imunologia , Imunogenicidade da Vacina , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Pneumonia Viral/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Vacinas Virais/administração & dosagem
7.
Cell ; 178(6): 1437-1451.e14, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491387

RESUMO

CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retroelementos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Domínios Proteicos
8.
Immunity ; 54(10): 2399-2416.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34481543

RESUMO

With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , SARS-CoV-2/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , COVID-19/virologia , Epitopos/química , Epitopos/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Camundongos , Testes de Neutralização , Domínios Proteicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Genes Dev ; 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008138

RESUMO

Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.

10.
Nature ; 614(7948): 548-554, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725934

RESUMO

Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution1-9. Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns. We resolve more than 1.6 million cells, enabling spatial analysis of immune lineages and activation states with distinct clinical correlates, including survival. Using deep learning, we can predict with high accuracy those patients who will progress after surgery using a single 1-mm2 tumour core, which could be informative for clinical management following surgical resection. Our dataset represents a valuable resource for the non-small cell lung cancer research community and exemplifies the utility of spatial resolution within single-cell analyses. This study also highlights how artificial intelligence can improve our understanding of microenvironmental features that underlie cancer progression and may influence future clinical practice.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Análise de Célula Única , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/cirurgia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Pulmão/patologia , Pulmão/cirurgia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Microambiente Tumoral/imunologia , Progressão da Doença , Aprendizado Profundo , Prognóstico
11.
Nature ; 614(7948): 555-563, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725935

RESUMO

Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.


Assuntos
Neoplasias Encefálicas , Glioma , Análise de Célula Única , Microambiente Tumoral , Humanos , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Glioblastoma/imunologia , Glioblastoma/patologia , Glioma/imunologia , Glioma/patologia , Macrófagos/enzimologia , Microambiente Tumoral/imunologia , Metástase Neoplásica , Conjuntos de Dados como Assunto
12.
Nat Immunol ; 17(3): 297-303, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26752376

RESUMO

Inflammation induced during infection can both promote and suppress immunity. This contradiction suggests that inflammatory cytokines affect the immune system in a context-dependent manner. Here we show that nonspecific bystander inflammation conditions naive CD4(+) T cells for enhanced peripheral Foxp3 induction and reduced effector differentiation. This results in inhibition of immune responses in vivo via a Foxp3-dependent effect on antigen-specific naive CD4(+) T cell precursors. Such conditioning may have evolved to allow immunity to infection while limiting subsequent autoimmunity caused by release of self-antigens in the wake of infection. Furthermore, this phenomenon suggests a mechanistic explanation for the idea that early tuning of the immune system by infection affects the long-term quality of immune regulation.


Assuntos
Asma/imunologia , Autoimunidade/imunologia , Efeito Espectador/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Diabetes Mellitus/imunologia , Fatores de Transcrição Forkhead/imunologia , Inflamação , Tolerância a Antígenos Próprios/imunologia , Animais , Autoantígenos , Efeito Espectador/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/efeitos dos fármacos , Citocinas/farmacologia , Metilação de DNA , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Indutores de Interferon/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tolerância Periférica/imunologia , Poli I-C/farmacologia , Regiões Promotoras Genéticas , Linfopoietina do Estroma do Timo
13.
Trends Immunol ; 45(2): 85-93, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135598

RESUMO

Only a subset of viruses can productively infect many different host species. Some arthropod-transmitted viruses, such as alphaviruses, can infect invertebrate and vertebrate species including insects, reptiles, birds, and mammals. This broad tropism may be explained by their ability to engage receptors that are conserved across vertebrate and invertebrate classes. Through several genome-wide loss-of-function screens, new alphavirus receptors have been identified, some of which bind to multiple related viruses in different antigenic complexes. Structural analysis has revealed that distinct sites on the alphavirus glycoprotein can mediate receptor binding, which opposes the idea that a single receptor-binding site mediates viral entry. Here, we discuss how different paradigms of receptor engagement on cells might explain the promiscuity of alphaviruses for multiple hosts.


Assuntos
Alphavirus , Humanos , Animais , Alphavirus/metabolismo , Replicação Viral , Mamíferos
14.
Nature ; 583(7816): 411-414, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555453

RESUMO

Egg size and structure reflect important constraints on the reproductive and life-history characteristics of vertebrates1. More than two-thirds of all extant amniotes lay eggs2. During the Mesozoic era (around 250 million to 65 million years ago), body sizes reached extremes; nevertheless, the largest known egg belongs to the only recently extinct elephant bird3, which was roughly 66 million years younger than the last nonavian dinosaurs and giant marine reptiles. Here we report a new type of egg discovered in nearshore marine deposits from the Late Cretaceous period (roughly 68 million years ago) of Antarctica. It exceeds all nonavian dinosaur eggs in volume and differs from them in structure. Although the elephant bird egg is slightly larger, its eggshell is roughly five times thicker and shows a substantial prismatic layer and complex pore structure4. By contrast, the new fossil, visibly collapsed and folded, presents a thin eggshell with a layered structure that lacks a prismatic layer and distinct pores, and is similar to that of most extant lizards and snakes (Lepidosauria)5. The identity of the animal that laid the egg is unknown, but these preserved morphologies are consistent with the skeletal remains of mosasaurs (large marine lepidosaurs) found nearby. They are not consistent with described morphologies of dinosaur eggs of a similar size class. Phylogenetic analyses of traits for 259 lepidosaur species plus outgroups suggest that the egg belonged to an individual that was at least 7 metres long, hypothesized to be a giant marine reptile, all clades of which have previously been proposed to show live birth6. Such a large egg with a relatively thin eggshell may reflect derived constraints associated with body shape, reproductive investment linked with gigantism, and lepidosaurian viviparity, in which a 'vestigial' egg is laid and hatches immediately7.


Assuntos
Dinossauros , Casca de Ovo/anatomia & histologia , Casca de Ovo/química , Fósseis , Dureza , Animais , Evolução Biológica , Dinossauros/classificação
15.
Nucleic Acids Res ; 52(9): 5336-5355, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381904

RESUMO

Temporally and spatially controlled accumulation underlies the functions of microRNAs (miRNAs) in various developmental processes. In Caenorhabditis elegans, this is exemplified by the temporal patterning miRNAs lin-4 and let-7, but for most miRNAs, developmental expression patterns remain poorly resolved. Indeed, experimentally observed long half-lives may constrain possible dynamics. Here, we profile miRNA expression throughout C. elegans postembryonic development at high temporal resolution, which identifies dynamically expressed miRNAs. We use mathematical models to explore the underlying mechanisms. For let-7, we can explain, and experimentally confirm, a striking stepwise accumulation pattern through a combination of rhythmic transcription and stage-specific regulation of precursor processing by the RNA-binding protein LIN-28. By contrast, the dynamics of several other miRNAs cannot be explained by regulation of production rates alone. Specifically, we show that a combination of oscillatory transcription and rhythmic decay drive rhythmic accumulation of miR-235, orthologous to miR-92 in other animals. We demonstrate that decay of miR-235 and additional miRNAs depends on EBAX-1, previously implicated in target-directed miRNA degradation (TDMD). Taken together, our results provide insight into dynamic miRNA decay and establish a resource to studying both the developmental functions of, and the regulatory mechanisms acting on, miRNAs.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas Repressoras , Estabilidade de RNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
16.
Plant Physiol ; 195(3): 2234-2255, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38537616

RESUMO

The hydrophobic cuticle is the first line of defense between aerial portions of plants and the external environment. On maize (Zea mays L.) silks, the cuticular cutin matrix is infused with cuticular waxes, consisting of a homologous series of very long-chain fatty acids (VLCFAs), aldehydes, and hydrocarbons. Together with VLC fatty-acyl-CoAs (VLCFA-CoAs), these metabolites serve as precursors, intermediates, and end-products of the cuticular wax biosynthetic pathway. To deconvolute the potentially confounding impacts of the change in silk microenvironment and silk development on this pathway, we profiled cuticular waxes on the silks of the inbreds B73 and Mo17, and their reciprocal hybrids. Multivariate interrogation of these metabolite abundance data demonstrates that VLCFA-CoAs and total free VLCFAs are positively correlated with the cuticular wax metabolome, and this metabolome is primarily affected by changes in the silk microenvironment and plant genotype. Moreover, the genotype effect on the pathway explains the increased accumulation of cuticular hydrocarbons with a concomitant reduction in cuticular VLCFA accumulation on B73 silks, suggesting that the conversion of VLCFA-CoAs to hydrocarbons is more effective in B73 than Mo17. Statistical modeling of the ratios between cuticular hydrocarbons and cuticular VLCFAs reveals a significant role of precursor chain length in determining this ratio. This study establishes the complexity of the product-precursor relationships within the silk cuticular wax-producing network by dissecting both the impact of genotype and the allocation of VLCFA-CoA precursors to different biological processes and demonstrates that longer chain VLCFA-CoAs are preferentially utilized for hydrocarbon biosynthesis.


Assuntos
Ácidos Graxos , Hidrocarbonetos , Ceras , Zea mays , Zea mays/metabolismo , Zea mays/genética , Ceras/metabolismo , Hidrocarbonetos/metabolismo , Ácidos Graxos/metabolismo , Genótipo , Metaboloma , Epiderme Vegetal/metabolismo , Vias Biossintéticas
17.
Proc Natl Acad Sci U S A ; 119(43): e2109326119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35609205

RESUMO

The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.


Assuntos
Aves , Casca de Ovo , Animais , Humanos , Filogenia , Aves/genética , DNA/genética , Evolução Biológica , Fósseis , DNA Antigo
18.
Proc Natl Acad Sci U S A ; 119(48): e2202934119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417437

RESUMO

The molecular mechanisms by which dietary fruits and vegetables confer cardiometabolic benefits remain poorly understood. Historically, these beneficial properties have been attributed to the antioxidant activity of flavonoids. Here, we reveal that the host metabolic benefits associated with flavonoid consumption hinge, in part, on gut microbial metabolism. Specifically, we show that a single gut microbial flavonoid catabolite, 4-hydroxyphenylacetic acid (4-HPAA), is sufficient to reduce diet-induced cardiometabolic disease (CMD) burden in mice. The addition of flavonoids to a high fat diet heightened the levels of 4-HPAA within the portal plasma and attenuated obesity, and continuous delivery of 4-HPAA was sufficient to reverse hepatic steatosis. The antisteatotic effect was shown to be associated with the activation of AMP-activated protein kinase α (AMPKα). In a large survey of healthy human gut metagenomes, just over one percent contained homologs of all four characterized bacterial genes required to catabolize flavonols into 4-HPAA. Our results demonstrate the gut microbial contribution to the metabolic benefits associated with flavonoid consumption and underscore the rarity of this process in human gut microbial communities.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Polifenóis/farmacologia , Microbioma Gastrointestinal/fisiologia , Fígado Gorduroso/prevenção & controle , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia
19.
J Biol Chem ; 299(11): 105299, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777156

RESUMO

Microbes living in the intestine can regulate key signaling processes in the central nervous system that directly impact brain health. This gut-brain signaling axis is partially mediated by microbe-host-dependent immune regulation, gut-innervating neuronal communication, and endocrine-like small molecule metabolites that originate from bacteria to ultimately cross the blood-brain barrier. Given the mounting evidence of gut-brain crosstalk, a new therapeutic approach of "psychobiotics" has emerged, whereby strategies designed to primarily modify the gut microbiome have been shown to improve mental health or slow neurodegenerative diseases. Diet is one of the most powerful determinants of gut microbiome community structure, and dietary habits are associated with brain health and disease. Recently, the metaorganismal (i.e., diet-microbe-host) trimethylamine N-oxide (TMAO) pathway has been linked to the development of several brain diseases including Alzheimer's, Parkinson's, and ischemic stroke. However, it is poorly understood how metaorganismal TMAO production influences brain function under normal physiological conditions. To address this, here we have reduced TMAO levels by inhibiting gut microbe-driven choline conversion to trimethylamine (TMA), and then performed comprehensive behavioral phenotyping in mice. Unexpectedly, we find that TMAO is particularly enriched in the murine olfactory bulb, and when TMAO production is blunted at the level of bacterial choline TMA lyase (CutC/D), olfactory perception is altered. Taken together, our studies demonstrate a previously underappreciated role for the TMAO pathway in olfactory-related behaviors.


Assuntos
Percepção Olfatória , Animais , Camundongos , Bactérias/metabolismo , Colina/metabolismo , Metilaminas/metabolismo , Feminino , Camundongos Endogâmicos C57BL
20.
J Am Chem Soc ; 146(5): 2950-2958, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286797

RESUMO

The selective modification of nitrogen heteroaromatics enables the development of new chemical tools and accelerates drug discovery. While methods that focus on expanding or contracting the skeletal structures of heteroaromatics are emerging, methods for the direct exchange of single core atoms remain limited. Here, we present a method for 14N → 15N isotopic exchange for several aromatic nitrogen heterocycles. This nitrogen isotope transmutation occurs through activation of the heteroaromatic substrate by triflylation of a nitrogen atom, followed by a ring-opening/ring-closure sequence mediated by 15N-aspartate to effect the isotopic exchange of the nitrogen atom. Key to the success of this transformation is the formation of an isolable 15N-succinyl intermediate, which undergoes elimination to give the isotopically labeled heterocycle. These transformations occur under mild conditions in high chemical and isotopic yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA