Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37369025

RESUMO

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Camundongos , Animais , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Metabolismo Energético/genética , Fígado/metabolismo
2.
JIMD Rep ; 58(1): 44-51, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33728246

RESUMO

Methylmalonyl-CoA mutase (MMUT) is part of the propionyl-CoA catabolic pathway, responsible for the breakdown of branched-chain amino acids, odd-chain fatty acids and the side-chain of cholesterol. Patients with deficient activity of MMUT suffer from isolated methylmalonic aciduria (MMAuria), frequently presenting in the newborn period with failure to thrive and metabolic crisis. Even well managed patients remain at risk for metabolic crises, of which one known trigger is acute illness, which may lead to poor feeding and vomiting, putting the patient in a catabolic state. This situation is believed to result in increased breakdown of propionyl-CoA catabolic pathway precursors, producing massively elevated levels of disease related metabolites, including methylmalonic acid and propionylcarnitine. Here, we used fasting of a hemizygous mouse model (Mut-ko/ki) of MMUT deficiency to study the role of induced catabolism on metabolite production. Although mice lost weight and displayed markers consistent with a catabolic state, contrary to expectation, we found strongly reduced levels of methylmalonic acid and propionylcarnitine in fasted conditions. Switching Mut-ko/ki mice from a high-protein diet to fasted conditions, or from a standard diet to a no-protein diet, resulted in similar reductions of methylmalonic acid and propionylcarnitine levels. These results suggest, in our mouse model at least, induction of a catabolic state on its own may not be sufficient to trigger elevated metabolite levels.

3.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165622, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770620

RESUMO

Isolated methylmalonic aciduria (MMAuria) is primarily caused by deficiency of methylmalonyl-CoA mutase (MMUT or MUT). Biochemically, MUT deficiency results in the accumulation of methylmalonic acid (MMA), propionyl-carnitine (C3) and other metabolites. Patients often exhibit lethargy, failure to thrive and metabolic decompensation leading to coma or even death, with kidney and neurological impairment frequently identified in the long-term. Here, we report a hemizygous mouse model which combines a knock-in (ki) missense allele of Mut with a knock-out (ko) allele (Mut-ko/ki mice) that was fed a 51%-protein diet from day 12 of life, constituting a bespoke model of MMAuria. Under this diet, mutant mice developed a pronounced metabolic phenotype characterized by drastically increased blood levels of MMA and C3 compared to their littermate controls (Mut-ki/wt). With this bespoke mouse model, we performed a standardized phenotypic screen to assess the whole-body impairments associated with this strong metabolic condition. We found that Mut-ko/ki mice show common clinical manifestations of MMAuria, including pronounced failure to thrive, indications of mild neurological and kidney dysfunction, and degenerative morphological changes in the liver, along with less well described symptoms such as cardiovascular and hematological abnormalities. The analyses also reveal so far unknown disease characteristics, including low bone mineral density, anxiety-related behaviour and ovarian atrophy. This first phenotypic screening of a MMAuria mouse model confirms its relevance to human disease, reveals new alterations associated with MUT deficiency, and suggests a series of quantifiable readouts that can be used to evaluate potential treatment strategies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Metilmalonil-CoA Mutase/deficiência , Metilmalonil-CoA Mutase/genética , Animais , Ansiedade/genética , Ansiedade/patologia , Densidade Óssea/genética , Modelos Animais de Doenças , Feminino , Rim/patologia , Masculino , Ácido Metilmalônico/metabolismo , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA