Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995686

RESUMO

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Imunidade Vegetal/genética
2.
Plant Cell ; 34(10): 4066-4087, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35880836

RESUMO

Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.


Assuntos
Compostos de Amônio , Micorrizas , Compostos de Amônio/metabolismo , Regulação da Expressão Gênica de Plantas , Micorrizas/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Solo , Zea mays/metabolismo
3.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36047828

RESUMO

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Assuntos
Grão Comestível , Glucose , Transportadores de Nitrato , Transportador 1 de Peptídeos , Proteínas de Plantas , Sacarose , Zea mays , Humanos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Glucose/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Transporte Biológico
4.
Plant Cell Environ ; 47(4): 1416-1431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226783

RESUMO

White lupin (lupinus albus L.) forms special bottlebrush-like root structures called cluster roots (CR) when phosphorus is low, to remobilise sparingly soluble phosphates in the soil. The molecular mechanisms that control the CR formation remain unknown. Root development in other plants is regulated by CLE  (CLAVATA3/ EMBRYO SURROUNDING REGION (ESR)-RELATED) peptides, which provide more precise control mechanisms than common phytohormones. This makes these peptides interesting candidates to be involved in CR formation, where fine tuning to environmental factors is required. In this study we present an analysis of CLE peptides in white lupin. The peptides LaCLE35 (RGVHy PSGANPLHN) and LaCLE55 (RRVHy PSCHy PDPLHN) reduced root growth and altered CR in hydroponically cultured white lupins. We demonstrate that rootlet density and rootlet length were locally, but not systemically, impaired by exogenously applied CLE35. The peptide was identified in the xylem sap. The inhibitory effect of CLE35 on root growth was attributed to arrested cell elongation in root tips. Taken together, CLE peptides affect both rootlet density and rootlet length, which are two critical factors for CR formation, and may be involved in fine tuning this peculiar root structure that is present in a few crops and many Proteaceae species, under low phosphorus availability.


Assuntos
Lupinus , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Peptídeos
5.
Plant J ; 109(5): 1249-1270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897849

RESUMO

Plants cope with low phosphorus availability by adjusting growth and metabolism through transcriptomic and proteomic adaptations. We hypothesize that selected genotypes with distinct phosphorous (P) use efficiency covering the breeding history of European Flint heterotic pool provide a tool to reveal general and genotype-specific molecular responses to P limitation. We reconstructed protein and gene co-expression networks by weighted correlation network analysis and related these to phosphate deficiency-induced traits. In roots, low phosphate supply resulted in a decreasing abundance of proteins in the oxidative pentose phosphate pathway and a negative correlation with root and shoot phosphate content. We observed an increase in abundance and positive correlation with root and shoot phosphate content for proteins in sucrose biosynthesis, lipid metabolism, respiration and RNA processing. Purple acid phosphatases, superoxide dismutase and phenylalanine ammonia lyase were identified as being upregulated under low phosphate in all genotypes. Overall, correlations between protein and mRNA abundance changes were limited, with ribosomal proteins and the ubiquitin protein degradation pathway exclusively responding with protein abundance changes. Carbohydrate, phospho- and sulfo-lipid metabolism showed abundance changes at the protein and mRNA levels. These partially non-overlapping proteomic and transcriptomic adjustments to low phosphate suggest sugar and lipid metabolism as metabolic processes associated with improved P use efficiency specifically in Founder Flint lines. We identified a mitogen-activated protein kinase-kinase as a potential genotype-specific regulator of sucrose metabolism at low phosphate in Founder Flint line EP1. We conclude that, during breedingt of Elite Flint lines, regulation of primary metabolism has changed to result in a distinct low phosphate response in Founder lines.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Genótipo , Fosfatos/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Sacarose/metabolismo , Zea mays/metabolismo
6.
Plant Physiol ; 190(2): 1275-1288, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762968

RESUMO

Ammonium uptake at plant roots is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Phosphorylation by the protein kinase calcineurin B-like protein (CBL)-interacting protein kinase 23 (CIPK23) transiently inactivates ammonium transporters (AMT1s), but the phosphatases activating AMT1s remain unknown. Here, we identified the PP2C phosphatase abscisic acid (ABA) insensitive 1 (ABI1) as an activator of AMT1s in Arabidopsis (Arabidopsis thaliana). We showed that high external ammonium concentrations elevate the level of the stress phytohormone ABA, possibly by de-glycosylation. Active ABA was sensed by ABI1-PYR1-like () complexes followed by the inactivation of ABI1, in turn activating CIPK23. Under favorable growth conditions, ABI1 reduced AMT1;1 and AMT1;2 phosphorylation, both by binding and inactivating CIPK23. ABI1 further directly interacted with AMT1;1 and AMT1;2, which would be a prerequisite for dephosphorylation of the transporter by ABI1. Thus, ABI1 is a positive regulator of ammonium uptake, coupling nutrient acquisition to abiotic stress signaling. Elevated ABA reduces ammonium uptake during stress situations, such as ammonium toxicity, whereas ABI1 reactivates AMT1s under favorable growth conditions.


Assuntos
Compostos de Amônio , Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcineurina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
7.
J Exp Bot ; 73(14): 4733-4752, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35552412

RESUMO

The lifespan of plants is restricted by environmental and genetic components. Following the transition to reproductive growth, leaf senescence ends cellular life in monocarpic plants to remobilize nutrients to storage organs. In Arabidopsis, we initially observed altered leaf to seed ratios, faster senescence progression, altered leaf nitrogen recovery after transient nitrogen removal, and ultimately enhanced nitrogen remobilization from the leaves in two methylation mutants (ros1 and the triple dmr1/2 cmt3 knockout). Analysis of the DNA methylome in wild type Col-0 leaves identified an initial moderate decline of cytosine methylation with progressing leaf senescence, predominantly in the CG context. Late senescence was associated with moderate de novo methylation of cytosines, primarily in the CHH context. Relatively few differentially methylated regions, including one in the ROS1 promoter linked to down-regulation of ROS1, were present, but these were unrelated to known senescence-associated genes. Differential methylation patterns were identified in transcription factor binding sites, such as the W-boxes that are targeted by WRKYs. Methylation in artificial binding sites impaired transcription factor binding in vitro. However, it remains unclear how moderate methylome changes during leaf senescence are linked with up-regulated genes during senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Senescência Vegetal , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo
8.
Physiol Plant ; 174(6): e13807, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270730

RESUMO

Manganese (Mn) is an essential microelement, but overaccumulation is harmful to many plant species. Most plants have similar minimal Mn requirements, but the tolerance to elevated Mn varies considerably. Mobilization of phosphate (P) by plant roots leads to increased Mn uptake, and shoot Mn levels have been reported to serve as an indicator for P mobilization efficiency in the presence of P deficiency. White lupin (Lupinus albus L.) mobilizes P and Mn with outstanding efficiency due to the formation of determinate cluster roots that release carboxylates. The high Mn tolerance of L. albus goes along with shoot Mn accumulation, but the molecular basis of this detoxification mechanism has been unknown. In this study, we identify LaMTP8.1 as the transporter mediating vacuolar sequestration of Mn in the shoot of white lupin. The function of Mn transport was demonstrated by yeast complementation analysis, in which LaMTP8.1 detoxified Mn in pmr1∆ mutant cells upon elevated Mn supply. In addition, LaMTP8.1 also functioned as an iron (Fe) transporter in yeast assays. The expression of LaMTP8.1 was particularly high in old leaves under high Mn stress. However, low P availability per se did not result in transcriptional upregulation of LaMTP8.1. Moreover, LaMTP8.1 expression was strongly upregulated under Fe deficiency, where it was accompanied by Mn accumulation, indicating a role in the interaction of these micronutrients in L. albus. In conclusion, the tonoplast-localized Mn transporter LaMTP8.1 mediates Mn detoxification in leaf vacuoles, providing a mechanistic explanation for the high Mn accumulation and Mn tolerance in this species.


Assuntos
Lupinus , Lupinus/genética , Lupinus/metabolismo , Manganês/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
9.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955715

RESUMO

Root foraging enables plants to obtain more soil nutrients in a constantly changing nutrient environment. Little is known about the adaptation mechanism of adventitious roots of plants dominated by asexual reproduction (such as tea plants) to soil potassium heterogeneity. We investigated root foraging strategies for K by two tea plants (low-K tolerant genotype "1511" and low-K intolerant genotype "1601") using a multi-layer split-root system. Root exudates, root architecture and transcriptional responses to K heterogeneity were analyzed by HPLC, WinRHIZO and RNA-seq. With the higher leaf K concentrations and K biological utilization indexes, "1511" acclimated to K heterogeneity better than "1601". For "1511", maximum total root length and fine root length proportion appeared on the K-enriched side; the solubilization of soil K reached the maximum on the low-K side, which was consistent with the amount of organic acids released through root exudation. The cellulose decomposition genes that were abundant on the K-enriched side may have promoted root proliferation for "1511". This did not happen in "1601". The low-K tolerant tea genotype "1511" was better at acclimating to K heterogeneity, which was due to a smart root foraging strategy: more roots (especially fine roots) were developed in the K-enriched side; more organic acids were secreted in the low-K side to activate soil K and the root proliferation in the K-enriched side might be due to cellulose decomposition. The present research provides a practical basis for a better understanding of the adaptation strategies of clonal woody plants to soil nutrient availability.


Assuntos
Camellia sinensis , Solo , Camellia sinensis/genética , Celulose , Raízes de Plantas/fisiologia , Potássio , Chá
10.
J Biol Chem ; 295(10): 3362-3370, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31988244

RESUMO

Ammonium transporters (AMT), methylamine permeases (Mep), and the more distantly related rhesus factors (Rh) are trimeric membrane proteins present in all domains of life. AMT/Mep/Rhs are highly selective membrane proteins required for ammonium uptake or release, and they efficiently exclude the similarly sized K+ ion. Previously reported crystal structures have revealed that each transporter subunit contains a unique hydrophobic but occluded central pore, but it is unclear whether the base (NH3) or NH3 coupled with an H+ are transported. Here, using expression of two plant AMTs (AtAMT1;2 and AMT2) in budding yeast, we found that systematic replacements in the conserved twin-histidine motif, a hallmark of most AMT/Mep/Rh, alter substrate recognition, transport capacities, N isotope selection, and selectivity against K+ AMT-specific differences were found for histidine variants. Variants that completely lost ammonium N isotope selection, a feature likely associated with NH4+ deprotonation during passage, substantially transported K+ in addition to NH4+ Of note, the twin-histidine motif was not essential for ammonium transport. However, it conferred key AMT features, such as high substrate affinity and selectivity against alkali cations via an NH4+ deprotonation mechanism. Our findings indicate that the twin-His motif is the core structure responsible for substrate deprotonation and isotopic preferences in AMT pores and that decreased deprotonation capacity is associated with reduced selectivity against K+ We conclude that optimization for ammonium transport in plant AMT represents a compromise between substrate deprotonation for optimal selectivity and high substrate affinity and transport rates.


Assuntos
Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Histidina/metabolismo , Proteínas de Plantas/metabolismo , Compostos de Amônio/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Histidina/química , Íons/química , Cinética , Metilaminas/metabolismo , Mutagênese Sítio-Dirigida , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Oócitos/metabolismo , Proteínas de Plantas/genética , Potássio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especificidade por Substrato , Xenopus laevis/crescimento & desenvolvimento
11.
Ann Bot ; 127(1): 155-166, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877525

RESUMO

BACKGROUND AND AIMS: An increase in root hair length and density and the development of arbuscular mycorrhiza symbiosis are two alternative strategies of most plants to increase the root-soil surface area under phosphorus (P) deficiency. Across many plant species, root hair length and mycorrhization density are inversely correlated. Root architecture, rooting density and physiology also differ between species. This study aims to understand the relationship among root hairs, arbuscular mycorrhizal fungi (AMF) colonization, plant growth, P acquisition and mycorrhizal-specific Pi transporter gene expression in maize. METHODS: Using nearly isogenic maize lines, the B73 wild type and the rth3 root hairless mutant, we quantified the effect of root hairs and AMF infection in a calcareous soil under P deficiency through a combined analysis of morphological, physiological and molecular factors. KEY RESULTS: Wild-type root hairs extended the rhizosphere for acid phosphatase activity by 0.5 mm compared with the rth3 hairless mutant, as measured by in situ zymography. Total root length of the wild type was longer than that of rth3 under P deficiency. Higher AMF colonization and mycorrhiza-induced phosphate transporter gene expression were identified in the mutant under P deficiency, but plant growth and P acquisition were similar between mutant and the wild type. The mycorrhizal dependency of maize was 33 % higher than the root hair dependency. CONCLUSIONS: The results identified larger mycorrhizal dependency than root hair dependency under P deficiency in maize. Root hairs and AMF inoculation are two alternative ways to increase Pi acquisition under P deficiency, but these two strategies compete with each other.


Assuntos
Micorrizas , Fósforo , Raízes de Plantas , Solo , Simbiose , Zea mays
12.
Ann Bot ; 128(4): 431-440, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34309655

RESUMO

BACKGROUND AND AIMS: Root proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition. METHODS: Near-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg-1 soil. RESULTS: Both WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients. CONCLUSIONS: In addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.


Assuntos
Fósforo , Zea mays , Nutrientes , Raízes de Plantas , Solo
13.
Physiol Plant ; 171(3): 328-342, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32335941

RESUMO

Conventional wheat production utilizes fertilizers of various nitrogen forms. Sole ammonium nutrition has been shown to improve grain quality, despite the potential toxic effects of ammonium at elevated concentrations. We therefore investigated the responses of young seedlings of winter wheat to different nitrogen sources (NH4 NO3 = NN, NH4 Cl = NNH4 + and KNO3 = NNO3 - ). Growth with ammonium-nitrate was superior. However, an elevated concentration of sole ammonium caused severe toxicity symptoms and significant decreases in biomass accumulation. We addressed the molecular background of the ammonium uptake by gathering an overview of the ammonium transporter (AMT) of wheat (Triticum aestivum) and characterized the putative high-affinity TaAMT1 transporters. TaAMT1;1 and TaAMT1;2 were both active in yeast and Xenopus laevis oocytes and showed saturating high-affinity ammonium transport characteristics. Interestingly, nitrogen starvation, as well as ammonium resupply to starved seedlings triggered an increase in the expression of the TaAMT1s. The presence of nitrate seamlessly repressed their expression. We conclude that wheat showed the ability to respond robustly to sole ammonium supply by adopting distinct physiological and transcriptional responses.


Assuntos
Compostos de Amônio , Plântula , Compostos de Amônio/toxicidade , Fertilizantes , Nitratos , Nitrogênio , Raízes de Plantas , Plântula/genética , Triticum/genética
14.
Physiol Plant ; 173(3): 1207-1220, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333765

RESUMO

White lupin (Lupinus albus L.) forms brush-like root structures called cluster roots under phosphorus-deficient conditions. Clusters secrete citrate and other organic compounds to mobilize sparingly soluble soil phosphates. In the context of aluminum toxicity tolerance mechanisms in other species, citrate is released via a subgroup of MATE/DTX proteins (multidrug and toxic compound extrusion/detoxification). White lupin contains 56 MATE/DTX genes. Many of these are closely related to gene orthologs with known substrates in other species. LaMATE is a marker gene for functional, mature clusters and is, together with its close homolog LaMATE3, a candidate for the citrate release. Both were highest expressed in mature clusters and when expressed in oocytes, induced inward-rectifying currents that were likely carried by endogenous channels. No citrate efflux was associated with LaMATE and LaMATE3 expression in oocytes. Furthermore, citrate secretion was largely unaffected in P-deficient composite mutant plants with genome-edited or RNAi-silenced LaMATE in roots. Moderately lower concentrations of citrate and malate in the root tissue and consequently less organic acid anion secretion and lower malate in the xylem sap were identified. Interestingly, however, less genistein was consistently found in mutant exudates, opening the possibility that LaMATE is involved in isoflavonoid release.


Assuntos
Lupinus , Ácido Cítrico , Lupinus/genética , Fosfatos , Fósforo , Raízes de Plantas/genética
15.
Plant Cell Environ ; 43(7): 1691-1706, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239684

RESUMO

Under phosphorus (P) deficiency, Lupinus albus (white lupin) releases large amounts of organic acid anions from specialized root structures, so-called cluster or proteoid roots, to mobilize and acquire sparingly soluble phosphates from a restricted soil volume. The molecular mechanisms underlying this release and its regulation are, however, poorly understood. Here, we identified a gene belonging to the aluminium (Al)-activated malate transporter (ALMT) family that specifically contributes to malate, but not citrate release. This gene, LaALMT1, was most prominently expressed in the root apices under P deficiency, including those of cluster roots and was also detected in the root stele. Contrary to several ALMT homologs in other species, the expression was not stimulated, but moderately repressed by Al. Aluminium-independent malate currents were recorded from the plasma membrane localized LaALMT1 expressed in Xenopus oocytes. In composite lupins with transgenic roots, LaALMT1 was efficiently mutated by CRISPR-Cas9, leading to diminished malate efflux and lower xylem sap malate concentrations. When grown in an alkaline P-deficient soil, mutant shoot phosphate concentrations were similar, but iron and potassium concentrations were diminished in old leaves, suggesting a role for ALMT1 in metal root to shoot translocation, a function that was also supported by growth in hydroponics.


Assuntos
Lupinus/metabolismo , Malatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Lupinus/genética , Proteínas de Membrana Transportadoras/genética , Fósforo/deficiência , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Xilema/metabolismo
16.
Plant Cell ; 29(2): 409-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28188265

RESUMO

Ion transport in plants is not only strictly regulated on a transcriptional level, but it is also regulated posttranslationally. Enzyme modifications such as phosphorylation provide rapid regulation of many plant ion transporters and channels. Upon exposure to high ammonium concentrations in the rhizosphere, the high-affinity ammonium transporters (AMTs) in Arabidopsis thaliana are efficiently inactivated by phosphorylation to avoid toxic accumulation of cytoplasmic ammonium. External ammonium stimulates the phosphorylation of a conserved threonine in the cytosolic AMT1 C terminus, which allosterically inactivates AMT1 trimers. Using a genetic screen, we found that CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE23 (CIPK23), a kinase that also regulates the most abundant NO3- transporter, NPF6;3, and activates the K+ channel AKT1, inhibits ammonium transport and modulates growth sensitivity to ammonium. Loss of CIPK23 increased root NH4+ uptake after ammonium shock and conferred hypersensitivity to ammonium and to the transport analog methylammonium. CIPK23 interacts with AMT1;1 and AMT1;2 in yeast, oocytes, and in planta. Inactivation of AMT1;2 by direct interaction with CIPK23 requires kinase activity and the calcineurin B-like binding protein CBL1. Since K+, NO3-, and NH4+ are major ions taken up by plants, CIPK23 appears to occupy a key position in controlling ion balance and ion homeostasis in the plant cell.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Fenótipo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus laevis
17.
Mycorrhiza ; 30(6): 735-747, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32820366

RESUMO

While plants mainly rely on the use of inorganic nitrogen sources like ammonium and nitrate, soil-borne microorganisms like the ectomycorrhizal fungus Hebeloma cylindrosporum can also take up soil organic N in the form of amino acids and peptides that they use as nitrogen and carbon sources. Following the previous identification and functional expression in yeast of two PTR-like peptide transporters, the present study details the functions and substrates of HcPTR2A and HcPTR2B by analysing their transport kinetics in Xenopus laevis oocytes. While both transporters mediated high-affinity di- and tripeptide transport, HcPTR2A also showed low-affinity transport of several amino acids-mostly hydrophobic ones with large side chains.


Assuntos
Hebeloma , Proteínas de Membrana Transportadoras , Micorrizas , Regulação Fúngica da Expressão Gênica , Hebeloma/genética , Proteínas de Membrana Transportadoras/genética
18.
J Exp Bot ; 70(18): 4919-4930, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31087098

RESUMO

In plants, nutrient transporters require tight regulation to ensure optimal uptake in complex environments. The activities of many nutrient transporters are post-translationally regulated by reversible phosphorylation, allowing rapid adaptation to variable environmental conditions. Here, we show that the Arabidopsis root epidermis-expressed ammonium transporter AtAMT1;3 was dynamically (de-)phosphorylated at multiple sites in the cytosolic C-terminal region (CTR) responding to ammonium and nitrate signals. Under ammonium resupply rapid phosphorylation of a Thr residue (T464) in the conserved part of the CTR (CTRC) effectively inhibited AtAMT1;3-dependent NH4+ uptake. Moreover, phosphorylation of Thr (T494), one of three phosphorylation sites in the non-conserved part of the CTR (CRTNC), moderately decreased the NH4+ transport activity of AtAMT1;3, as deduced from functional analysis of phospho-mimic mutants in yeast, oocytes, and transgenic Arabidopsis. Double phospho-mutants indicated a role of T494 in fine-tuning the NH4+ transport activity when T464 was non-phosphorylated. Transient dephosphorylation of T494 with nitrate resupply closely paralleled a transient increase in ammonium uptake. These results suggest that T464 phosphorylation at the CTRC acts as a prime switch to prevent excess ammonium influx, while T494 phosphorylation at the CTRNC fine tunes ammonium uptake in response to nitrate. This provides a sophisticated regulatory mechanism for plant ammonium transporters to achieve optimal ammonium uptake in response to various nitrogen forms.


Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Fosforilação
19.
Ann Bot ; 124(6): 961-968, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30759179

RESUMO

BACKGROUND AND AIMS: Root hairs are single-cell extensions of the epidermis that face into the soil and increase the root-soil contact surface. Root hairs enlarge the rhizosphere radially and are very important for taking up water and sparingly soluble nutrients, such as the poorly soil-mobile phosphate. In order to quantify the importance of root hairs for maize, a mutant and the corresponding wild type were compared. METHODS: The rth2 maize mutant with very short root hairs was assayed for growth and phosphorus (P) acquisition in a slightly alkaline soil with low P and limited water supply in the absence of mycorrhization and with ample P supply. KEY RESULTS: Root and shoot growth was additively impaired under P deficiency and drought. Internal P concentrations declined with reduced water and P supply, whereas micronutrients (iron, zinc) were little affected. The very short root hairs in rth2 did not affect internal P concentrations, but the P content of juvenile plants was halved under combined stress. The rth2 plants had more fine roots and increased specific root length, but P mobilization traits (root organic carbon and phosphatase exudation) differed little. CONCLUSIONS: The results confirm the importance of root hairs for maize P uptake and content, but not for internal P concentrations. Furthermore, the performance of root hair mutants may be biased by secondary effects, such as altered root growth.


Assuntos
Secas , Zea mays , Fósforo , Raízes de Plantas , Solo
20.
Physiol Plant ; 166(2): 525-537, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29984412

RESUMO

White lupin cluster roots are specialized brush-like root structures that are formed in some species under phosphorus (P)-deficient conditions. They intensely secrete protons and organic acid anions for solubilization and acquisition of sparingly soluble phosphates. Phytohormones and sucrose modulate cluster root number, but the molecular mechanisms of cluster root formation have been elusive. Here, a novel peptide phytohormone was identified that affects cluster root development. It belongs to the C-TERMINALLY-ENCODED PEPTIDE (CEP) family. Members of that family arrest root growth and modulate branching in model species. LaCEP1 was highly expressed in the pre-emergence zone of clusters. Over-expression of the gene encoding the LaCEP1 propeptide resulted in moderate inhibition of cluster root formation. The primary and lateral root lengths of lupin were little affected by the overexpression, but LaCEP1 reduced cluster rootlet and root hair elongation. Addition of a 15-mer core peptide derived from LaCEP1 similarly altered root morphology and modified cluster activity, suggesting that a core sequence of the propeptide is functionally sufficient. Stable overexpression in Arabidopsis confirmed the LaCEP1 function in root growth inhibition across species. Taken together, the root inhibitory effects of the LaCEP1 phytohormone suggest a role as of a regulatory module involved in cluster root development in white lupin.


Assuntos
Lupinus/metabolismo , Peptídeos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Lupinus/genética , Peptídeos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA