RESUMO
An advanced characterization of the trophic niche of non-indigenous species (NIS) may provide useful information on their ecological impact on invaded communities. Here, we used carbon and nitrogen stable isotopes to estimate pairwise niche overlaps between non-indigenous and native consumers in the winter food web of Lake Trasimeno (central Italy). Overall, a relatively low pairwise overlap of isotopic niches was observed between NIS and native species. The only exception was the Louisiana crayfish Procambarus clarkii, which showed a relatively high and diffuse overlap with other native invertebrates. Our findings highlighted a high niche divergence between non-indigenous and native species in Lake Trasimeno, suggesting a potentially low degree of interspecific competition that may facilitate coexistence and, in turn, limit the strength of impacts. The divergent results obtained for the Louisiana crayfish indicate that additional control measures for this invasive species are needed to mitigate its impact on the Lake Trasimeno system.
RESUMO
In this study, the anthropogenic contamination in Trasimeno lake (Central Italy) was investigated using three sediment cores spanning over the last 150 years (Anthropocene) to identify the primary sources of pollution and quantify the level of contaminant enrichment in the basin. First, based on the relative cumulative frequency and linear regression methods, we obtained a geochemical baseline for the lake using the deeper parts of the sediment cores. The geochemical baseline allowed us to determine the values of trace elements enrichment factors. On this knowledge, as a second result, we were able to reconstruct the natural sources and the anthropogenic impact on the lake with a biennial resolution. This goal has been obtained by combining different inorganic and organic chemical proxies such as trace elements, polycyclic aromatic hydrocarbons, and lead isotope ratios and exploiting both principal component and factor analysis to associate chemical proxies to human-driven contamination processes. Five different groups of elements have been identified, one of which is of natural origin and four of anthropogenic origin. In particular, it was possible to identify the times and impacts of the industrial activities during the Second World War, which dispersed heavy metals in sediments. Moreover, we found evidence of the recent human activities that have characterized the surroundings of the basin, such as Pb inputs related to the use of gasoline and the enrichment of certain elements generally used in agricultural activities (such as P, Cu, and Mn) due to the development of this sector in the last 40 years.
Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Oligoelementos , Poluentes Químicos da Água , Humanos , Oligoelementos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Lagos/química , Metais Pesados/análiseRESUMO
In invertebrate biomonitors of chemical pollution, emphasis has been generally given to mean accumulation patterns and how they reflect varying environmental levels of contamination. Intra-population variability, and how it relates with individual phenotypic traits, has received less attention. Here, a set of analytes including trace elements (B, Ba, Cd, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sr, V, and Zn), macroelements (C, Ca, K, Mg, N, Na), and carbon and nitrogen stable isotopes (δ13C and δ15N) was measured in two populations of the crayfish Procambarus clarkii from Lake Trasimeno and Lake Bolsena (Central Italy). The influence of location, sex, body size, and condition factor was assessed; in addition, the analyte correlation profiles of the two populations were compared to verify their congruence. In general, significant inter-lake differences were observed in the concentration of both trace- and macroelements in crayfish tissues, generally mirroring the local chemistry of water and of benthic non-living matrices (sediment and plant detritus). Crayfish CN isotopic signatures excluded the occurrence of inter-lake variations in their omnivorous trophic habits. Correlation profiles varied considerably between the two populations in the nature and strength of bivariate relationships. However, Mantel tests and procrustean analyses indicated a general, significant congruence; C, N, and, to a lesser extent K, Li, Ni, Pb, and δ13C showed the highest procrustean residuals, suggesting that their associations with other analytes may be partially influenced by inter-population differences in growing phases. Our study indicates that the local geochemistry of the lacustrine environment influences the elemental fingerprint of Procambarus clarkii; the considerable inter-individual variability in the concentration of analytes, however, does not significantly reflect on their association, thus corroborating its effectiveness as an indicator species.
Assuntos
Astacoidea/química , Monitoramento Ambiental , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Itália , Metais Pesados/análiseRESUMO
A first synoptic and trans-domain overview of plankton dynamics was conducted across the aquatic sites belonging to the Italian Long-Term Ecological Research Network (LTER-Italy). Based on published studies, checked and complemented with unpublished information, we investigated phytoplankton and zooplankton annual dynamics and long-term changes across domains: from the large subalpine lakes to mountain lakes and artificial lakes, from lagoons to marine coastal ecosystems. This study permitted identifying common and unique environmental drivers and ecological functional processes controlling seasonal and long-term temporal course. The most relevant patterns of plankton seasonal succession were revealed, showing that the driving factors were nutrient availability, stratification regime, and freshwater inflow. Phytoplankton and mesozooplankton displayed a wide interannual variability at most sites. Unidirectional or linear long-term trends were rarely detected but all sites were impacted across the years by at least one, but in many case several major stressor(s): nutrient inputs, meteo-climatic variability at the local and regional scale, and direct human activities at specific sites. Different climatic and anthropic forcings frequently co-occurred, whereby the responses of plankton communities were the result of this environmental complexity. Overall, the LTER investigations are providing an unparalleled framework of knowledge to evaluate changes in the aquatic pelagic systems and management options.
Assuntos
Ecossistema , Monitoramento Ambiental , Plâncton/fisiologia , Animais , Itália , Fitoplâncton , Dinâmica Populacional , ZooplânctonRESUMO
The availability of more than thirty years of historical satellite data is a valuable source which could be used as an alternative to the sparse in-situ data. We developed a new homogenised time series of daily day time Lake Surface Water Temperature (LSWT) over the last thirty years (1986-2015) at a spatial resolution of 1km from thirteen polar orbiting satellites. The new homogenisation procedure implemented in this study corrects for the different acquisition times of the satellites standardizing the derived LSWT to 12:00 UTC. In this study, we developed new time series of LSWT for five large lakes in Italy and evaluated the product with in-situ data from the respective lakes. Furthermore, we estimated the long-term annual and summer trends, the temporal coherence of mean LSWT between the lakes, and studied the intra-annual variations and long-term trends from the newly developed LSWT time series. We found a regional warming trend at a rate of 0.017°Cyr-1 annually and 0.032°Cyr-1 during summer. Mean annual and summer LSWT temporal patterns in these lakes were found to be highly coherent. Amidst the reported rapid warming of lakes globally, it is important to understand the long-term variations of surface temperature at a regional scale. This study contributes a new method to derive long-term accurate LSWT for lakes with sparse in-situ data thereby facilitating understanding of regional level changes in lake's surface temperature.
RESUMO
The ratio of entropy generation rate to entropy embodied in structures relatively to the surroundings can be considered as an indicator of the ability of a self-organizing dissipative system to maintain itself far from equilibrium by pumping out entropy. The higher the ratio (which may be called the specific entropy production or the specific dissipation of a system), the lower the capacity of a system to convert the incoming low-entropy energy into internal organization. It appears that the ratio attains special significance for interpreting the evolution of biological systems, as the maximum expression of self-organizing systems, from the sub-cellular to the ecosystem scale. This paper proposes specific dissipation, written as the ratio of biological entropy production to exergy stored in the living biomass, as a thermodynamic orientor as well as an indicator of the development state of ecological systems. After having presented a method for estimating the specific dissipation in lakes, the adequacy of the proposed indicator is discussed and also tested by comparing its response to those of some classical ecological attributes (successional sequences of species, biodiversity, individual body size, structural organization and generation time of organisms) throughout the seasonal progression of the plankton community in Lake Trasimeno (Umbria, Italy). The results support the hypothesis that the minimization of specific dissipation is a primary criterion of evolution of ecological systems and also sustain the use of specific dissipation as an indicator of ecological maturity.