Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(24)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35245911

RESUMO

Near-infrared detection is widely used for nondestructive and non-contact inspections in various areas, including thermography, environmental and chemical analysis as well as food and medical diagnoses. Common room temperature bolometer-type infrared sensors are based on architectures in theµm range, limiting miniaturization for future highly integrated 'More than Moore' concepts. In this work, we present a first principle study on a highly scalable and CMOS compatible bolometer-type detector utilizing Ge nanowires as the thermal sensitive element. For this approach, we implemented the Ge nanowires on top of a low thermal conducting and highly absorptive membrane as a near infrared (IR) sensor element. We adopted a freestanding membrane coated with an impedance matched platinum absorber demonstrating wavelength independent absorptivity of 50% in the near to mid IR regime. The electrical characteristics of the device were measured depending on temperature and biasing conditions. A strong dependence of the resistance on the temperature was shown with a maximum temperature coefficient of resistance of -0.07 K-1atT = 100 K. Heat transport simulations using COMSOL were used to optimize the responsivity and temporal response, which are in good agreement with the experimental results. Further, lock-in measurements were used to benchmark the bolometer device at room temperature with respect to detectivity and noise equivalent power. Finally, we demonstrated that by operating the bolometer with a network of parallel nanowires, both detectivity and noise equivalent power can be effectively improved.

2.
J Intern Med ; 286(5): 503-525, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472002

RESUMO

Globally, some 71 million people are chronically infected with hepatitis C virus (HCV). Marginalized populations, particularly people who inject drugs (PWID), have low testing, linkage to care and treatment rates for HCV. Several models of care (MoCs) and service delivery interventions have the potential to improve outcomes across the HCV cascade of care, but much of the relevant research was carried out when interferon-based treatment was the standard of care. Often it was not practical to scale-up these earlier models and interventions because the clinical care needs of patients taking interferon-based regimens imposed too much of a financial and human resource burden on health systems. Despite the adoption of highly effective, all-oral direct-acting antiviral (DAA) therapies in recent years, approaches to HCV testing and treatment have evolved slowly and often remain rooted in earlier paradigms. The effectiveness of DAAs allows for simpler approaches and has encouraged countries where the drugs are widely available to set their sights on the ambitious World Health Organization (WHO) HCV elimination targets. Since a large proportion of chronically HCV-infected people are not currently accessing treatment, there is an urgent need to identify and implement existing simplified MoCs that speak to specific populations' needs. This article aims to: (i) review the evidence on MoCs for HCV; and (ii) distil the findings into recommendations for how stakeholders can simplify the path taken by chronically HCV-infected individuals from testing to cure and subsequent care and monitoring.


Assuntos
Procedimentos Clínicos/organização & administração , Atenção à Saúde/organização & administração , Hepatite C/terapia , Humanos
3.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958514

RESUMO

An Electron Cyclotron Emission (ECE) modeling code has been developed to model ECE radiation with an arbitrary electron momentum distribution, a small oblique angle, both ordinary (O-mode) and extraordinary polarizations (X-mode), and multiple cyclotron frequency harmonics. The emission and absorption coefficients are calculated using the Poynting theorem from the cold plasma dispersion and the electron-microwave interaction from the full anti-Hermitian tensor. The modeling shows several ECE radiation signatures that can be used to diagnose the population of suprathermal electrons in a tokamak. First, in an n = 2 X-mode (X2) optically thick plasma and oblique ECE view, the modeling shows that only suprathermal electrons, which reside in a finite region of the velocity and space domains, can effectively generate cyclotron emissions to the ECE receiver. The code also finds that the O1 mode is sensitive to suprathermal electrons of both a high v⊥ and v‖, while the X2 mode is dominantly sensitive to suprathermal electrons of a high v⊥. The modeling shows that an oblique ECE system with both X/O polarization and a broad frequency coverage can be used to effectively yield information of the suprathermal electron population in a tokamak.

4.
Phys Rev Lett ; 109(14): 145003, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083252

RESUMO

Dual (or sometimes multiple) flux tubes (DFTs) have been observed in the core of sawtoothing KSTAR tokamak plasmas with electron cyclotron resonance heating. The time evolution of the flux tubes visualized by a 2D electron cyclotron emission imaging diagnostic typically consists of four distinctive phases: (1) growth of one flux tube out of multiple small flux tubes during the initial buildup period following a sawtooth crash, resulting in a single dominant flux tube along the m/n=1/1 helical magnetic field lines, (2) sudden rapid growth of another flux tube via a fast heat transfer from the first one, resulting in approximately identical DFTs, (3) coalescence of the two flux tubes into a single m/n=1/1 flux tube resembling the internal kink mode in the normal sawteeth, which is explained by a model of two current-carrying wires confined on a flux surface, and (4) fast localized crash of the merged flux tube similar to the standard sawtooth crash. The dynamics of the DFTs implies that the internal kink mode is not a unique prerequisite to the sawtooth crash, providing a new insight on the control of the sawtooth.

5.
Rev Sci Instrum ; 93(10): 103509, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319363

RESUMO

A 693 GHz, eight-channel, poloidal high-k (k refers to wavenumber) collective scattering system is under development for the National Spherical Torus Experiment-Upgrade device. It will replace the previous 280 GHz, five-channel, tangential scattering system to study high-k electron density fluctuations, thereby providing a measurement of the kθ-spectrum of both electron temperature gradient and ion temperature gradient modes. A tool is under development to calculate the wavenumber that exists in the presence of strong magnetic pitch angles. We use this tool to motivate a new receiver optical design for significantly improved performance, details of which are presented herein.

6.
Rev Sci Instrum ; 93(11): 113509, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461457

RESUMO

System-on-chip millimeter wave integrated circuit technology is used on the two-dimensional millimeter-wave imaging reflectometer (MIR) upgrade for density fluctuation imaging on the DIII-D tokamak fusion plasma. Customized CMOS chips have been successfully developed for the transmitter module and receiver module array, covering the 55-75 GHz working band. The transmitter module has the capability of simultaneously launching eight tunable probe frequencies (>0 dBm output power each). The receiver enclosure contains 12 receiver modules in two vertical lines. The quasi-optical local oscillator coupling of previous MIR systems has been replaced with an internal active frequency multiplier chain for improved local oscillator power delivery and flexible installation in a narrow space together with improved shielding against electromagnetic interference. The 55-75 GHz low noise amplifier, used between the receiver antenna and the first-stage mixer, significantly improves module sensitivity and suppresses electronics noise. The receiver module has a 20 dB gain improvement compared with the mini-lens approach and better than -75 dBm sensitivity, and its electronics noise temperature has been reduced from 55 000 K down to 11 200 K. The V-band MIR system is developed for co-located multi-field investigation of MHD-scale fluctuations in the pedestal region with W-band electron cyclotron emission imaging on DIII-D tokamak.

7.
Rev Sci Instrum ; 93(10): 103528, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319341

RESUMO

Forward modeling is used to interpret inversion patterns of the pedestal-Scrape of Layer (SOL) Electron Cyclotron Emission (ECE) in DIII-D H-mode experiments. The modeling not only significantly improves the ECE data interpretation quality but also leads to the potential measurements of (1) the magnetic field strength |B| at the separatrix, (2) the pedestal |B| evolution during an inter-Edge Localized Mode (ELM) period, and (3) the pedestal Magnetohydrodynamics (MHD) radial structure. The ECE shine-through effect leads to three types of pedestal-SOL radiation inversions that are discussed in this paper. The first type of inversion is the non-monotonic Te,rad profile with respect to the major radius. Using the ECE frequency at the minimum Te,rad, the inversion can be applied to measure the magnetic field |B| at the separatrix and calibrate the mapping of the ECE channels with respect to the separatrix. The second type of inversion refers to the opposite phase between the radiation fluctuations δTe,rad at the pedestal and SOL. This δTe,rad phase inversion is sensitive to density and temperature fluctuations at the pedestal foot and, thus, can be used to qualitatively measure the MHD radial structure. The third type of inversion appears when the pedestal and SOL Te,rad evolve in an opposite trend, which can be used to infer the pedestal |B| field change during an inter-ELM period. The bandwidth effect on measuring δTe,rad due to pedestal MHD is also investigated in the radiation modeling.

8.
Phys Rev Lett ; 106(16): 165005, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599377

RESUMO

In this Letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k(⊥)ρ(s) ≲ 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of 2 decrease in the plasma effective thermal diffusivity.

9.
Phys Rev Lett ; 106(7): 075003, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405522

RESUMO

Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

10.
Phys Rev Lett ; 107(4): 045004, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21867016

RESUMO

The filamentary nature and dynamics of edge-localized modes (ELMs) in the KSTAR high-confinement mode plasmas have been visualized in 2D via electron cyclotron emission imaging. The ELM filaments rotating with a net poloidal velocity are observed to evolve in three distinctive stages: initial linear growth, interim quasisteady state, and final crash. The crash is initiated by a narrow fingerlike perturbation growing radially from a poloidally elongated filament. The filament bursts through this finger, leading to fast and collective heat convection from the edge region into the scrape-off layer, i.e., ELM crash.

11.
Rev Sci Instrum ; 92(3): 034714, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820035

RESUMO

Ultrashort Pulse Reflectometry (USPR) is a plasma diagnostic technique involving the propagation and reflection of ultrashort duration (∼few ns) chirps. The reflected packets pass through a multichannel filter with time-of-flight measurements performed on each of the filtered packets. A next generation USPR system is under development, spanning 28-75 GHz, for use on compact, short duration, magnetically confined fusion devices. This system presents a dramatic increase in performance compared with an earlier USPR system employed on the LLNL Sustained Spheromak Physics Experiment device more than a decade ago. The new system replaces upconverting mixers with higher power active multiplier chains to generate mm-wave transmitter chirps, with custom time-of-flight electronics reducing the time per measurement by a factor of 3X. Finally, the system is equipped with a field programmable gate array for data acquisition and analysis.

12.
Rev Sci Instrum ; 92(3): 033540, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820069

RESUMO

An Electron Cyclotron Emission Imaging (ECEI) data analysis module has been developed for the OMFIT platform to accommodate the needs of users at the DIII-D tokamak for physics applications. The user can easily access the ECEI spatial observation windows in the plasma that are calculated based on the automatically retrieved hardware setup and available DIII-D equilibria, perform spectral analysis, and obtain 2D electron temperature fluctuation images. The module provides a powerful data post-processing package for extracting important physics parameters from the 2D measurements, including the radial structure and poloidal mode number of Alfven eigenmodes, as well as the frequency-vs-wavenumber dispersion relationship of broadband MHD. The module propagates characterized synthetic fluctuations for the user, so one can perform forward modeling tasks with simple analytical fluctuations.

13.
Rev Sci Instrum ; 92(5): 053522, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243257

RESUMO

Monolithic, millimeter wave "system-on-chip" technology has been employed in chip heterodyne radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature and fluctuation diagnostics. The system employs 20 horn-waveguide receiver modules each with customized W-band (75-110 GHz) monolithic microwave integrated circuit chips comprising a W-band low noise amplifier, a balanced mixer, a ×2 local oscillator (LO) frequency doubler, and two intermediate frequency amplifier stages in each module. Compared to previous quasi-optical ECEI arrays with Schottky mixer diodes mounted on planar antennas, the upgraded W-band array exhibits >30 dB additional gain and 20× improvement in noise temperature; an internal eight times multiplier chain is used to provide LO coupling, thereby eliminating the need for quasi-optical coupling. The horn-waveguide shielding housing avoids out-of-band noise interference on each module. The upgraded ECEI system plays an important role for absolute electron temperature and fluctuation measurements for edge and core region transport physics studies. An F-band receiver chip (up to 140 GHz) is under development for additional fusion facilities with a higher toroidal magnetic field. Visualization diagnostics provide multi-scale and multi-dimensional data in plasma profile evolution. A significant aspect of imaging measurement is focusing on artificial intelligence for science applications.

14.
Confl Health ; 14: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140175

RESUMO

INTRODUCTION: The Central Mediterranean Route, passing through Libya, is one of the most dangerous for migrants. Episodes of violence have been documented but have not been accurately quantified. The objective of the study was to estimate the prevalence of episodes of violence suffered in Libya by migrants consulting the Médecins du Monde reception and healthcare centre in Seine-Saint-Denis (Ile-de-France). METHODOLOGY: A monocentric cross-sectional study was conducted from February to May 2019 including migrants over the age of 18 years who had passed through Libya and arrived in Europe from 2017. The presence of emotional distress was considered as exclusion criterion. The proportion, frequency and factors associated to physical, deprivation and sexual violence in Libya were estimated through a bespoke questionnaire, as well as healthcare access in Libya and psychosocial support needs. RESULTS: Ninety eight people were recruited and 72 were interviewed (17 refused to participate and 9 were excluded). 76.4% were men, with a mean age of 31.9 years, 76.4% had low educational level, 66.7% came from Ivory Coast and 59.7% had left their country for security reasons. The median length of stay in Libya was 180 days. The overall proportion of participants having suffered from violence was 96.4% among men and 88.2% among women. The prevalence of physical, deprivation and sexual violence for men and women were 94.2, 81.7 and 18% and 80.0, 86.7 and 53.3%, respectively. Access to healthcare in Libya was 2.8 and 63.9% of participants were oriented to psychosocial support after the interview. CONCLUSIONS: The vast majority of migrants reported having been victims of violence during their transit through Libya. Women were at particular risk of sexual violence. Access to health care in Libya was almost non-existent. Psychosocial support for this population is urgent.

15.
Rev Sci Instrum ; 91(9): 093504, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003819

RESUMO

Monolithic, millimeter-wave "system-on-chip" (SoC) technology has been employed in heterodyne receiver integrated circuit radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature profile and fluctuation evolution diagnostics. A prototype module operating in the E-band (72 GHz-80 GHz) was first employed in a 2 × 10 element array that demonstrated significant improvements over the previous quasi-optical Schottky diode mixer arrays during the 2018 operational campaign of the DIII-D tokamak. For compatibility with International Thermonuclear Experimental Reactor relevant scenarios on DIII-D, the SoC ECEI system was upgraded with 20 horn-waveguide receiver modules. Each individual module contains a University of California Davis designed W-band (75 GHz-110 GHz) receiver die that integrates a broadband low noise amplifier, a double balanced down-converting mixer, and a ×4 multiplier on the local oscillator (LO) chain. A ×2 multiplier and two IF amplifiers are packaged and selected to further boost the signal strength and downconvert the signal frequency. The upgraded W-band array exhibits >30 dB additional gain and 20× improvement in noise temperature compared with the previous Schottky diode radio frequency mixer input systems; an internal 8 times multiplier chain is used to bring down the LO frequency below 12 GHz, thereby obviating the need for a large aperture for quasi-optical LO coupling and replacing it with coaxial connectors. Horn-waveguide shielding housing avoids out-of-band noise interference on each individual module. The upgraded ECEI system plays an important role for absolute electron temperature evolution and fluctuation measurements for edge and core region transport physics studies.

16.
Rev Sci Instrum ; 89(9): 093506, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278691

RESUMO

Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry diagnostics have been employed on a number of magnetic fusion plasma confinement devices. The common approach is based on a Gaussian beam assumption, which generates good spatial resolution (centimeter level). However, the radial focal depth is limited by the poloidal resolution, which is comparable with the Rayleigh length (∼150 mm). By contrast, a new Bessel beam approach has been developed and demonstrated to generate much longer focal depth with the property of propagation stability. To test the new approach, the DIII-D tokamak LCP ECEI optics have been re-designed to support a Bessel beam approach based on an axicon lens. The achievable radial coverage can exceed that of the current Gaussian approach by 3×. The imaging result is discussed in this paper based on the simulation analysis and laboratory testing result.

17.
Rev Sci Instrum ; 89(10): 10H117, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399739

RESUMO

Synthetic diagnostics are aimed at simulating the response of diagnostic systems under actual experimental scenarios and are the key to drawing quantitative inferences from experimental data. The synthetic Electron Cyclotron Emission Imaging (ECEI) diagnostic is suitable for evaluation of the improvement arising from the application of Field Curvature Adjustment (FCA) lenses in the design of the upgraded Experimental Advanced Superconducting Tokamak (EAST) tokamak ECEI system. In previous ECEI systems, a curved image plane is inevitable in optics systems comprising only convex lenses, which leads to significant crosstalk between vertically adjacent channels and strongly limits the vertical channel resolution of the imaging system. The synthetic ECEI diagnostic results show that, with FCA lenses applied, the upgraded ECEI system has significant advantages to focus on high poloidal wavenumber structures with the aberrations from the spherical surfaces corrected and the various artifacts related to the field curvature suppressed. Also, the synthetic ECEI diagnostic is used for some quantitative calculations to partially decouple the effect of density fluctuations and temperature fluctuations for a given plasma.

18.
Rev Sci Instrum ; 89(10): 10C114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399655

RESUMO

An 8-channel, high-k poloidal far-infrared (FIR) scattering system is under development for the National Spherical Torus eXperiment Upgrade (NSTX-U). The 693 GHz poloidal scattering system replaces a 5-channel, 280 GHz high-k toroidal scattering system to study high-k electron density fluctuations on NSTX-U. The FIR probe beam launched from Bay G is aimed toward Bay L, where large aperture optics collect radiation at 8 simultaneous scattering angles ranging from 2° to 15°. The reduced wavelength in the poloidal system results in less refraction, and coupled with a new poloidal scattering geometry, extends measurement of poloidal wavenumbers from the previous limit of 7 cm-1 up to >40 cm-1. Steerable launch optics coupled with receiver optics that can be remotely translated in 5 axes allow the scattering volume to be placed from r/a = 0.1 out to the pedestal region (r/a ∼ 0.99) and allow for both upward and downward scattering to cover different regions of the 2D fluctuation spectrum.

19.
Rev Sci Instrum ; 89(10): 10H120, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399858

RESUMO

A new generation of millimeter-wave heterodyne imaging receiver arrays has been developed and demonstrated on the DIII-D electron cyclotron emission imaging (ECEI) system. Improved circuit integration, improved noise performance, and enhanced shielding from out-of-band emission are made possible by using advanced liquid crystal polymer (LCP) substrates and monolithic microwave integrated circuit (MMIC) receiver chips. This array exhibits ∼15 dB additional gain and >30× reduction in noise temperature compared to previous generation ECEI arrays. Each LCP horn-waveguide module houses a 3 × 3 mm GaAs MMIC receiver chip, which consists of a low noise millimeter-wave preamplifier, balanced mixer, and IF amplifier together with a local oscillator multiplier chain driven at ∼12 GHz. A proof-of-principle partial LCP instrument with 5 poloidal channels was installed on DIII-D in 2017, with a full proof-of-principle system (20 poloidal × 8 radial channels) installed and commissioned in early 2018. The enhanced shielding of the LCP modules is seen to greatly reduce the sensitivity of ECEI signals to out-of-band microwave noise which has plagued previous ECEI studies on DIII-D. The LCP ECEI system is expected to be a valuable diagnostic tool for pedestal region measurements, focusing particularly on electron temperature evolution during edge localized mode bursting.

20.
Rev Sci Instrum ; 89(10): 10H108, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399905

RESUMO

Recent advances in radio-frequency system-on-chip technology have provided mm-wave fusion plasma diagnostics with the capability to overcome major challenges such as space inefficiency, inflexible installation, sensitivity, susceptibility to EMI, and prohibitively high cost of conventional discrete component assemblies as higher imaging resolution and data accuracy are achieved by increasing the number of channels. Nowadays, shrinking transistor gate lengths on fabrication techniques have enabled hundreds of GHz operation, which is suitable for millimeter-wave diagnostics on current and future tokamaks. The Davis Millimeter Wave Research Center (DMRC) has successfully developed V-band (55-75 GHz) transmitter and receiver chips for Microwave Imaging Reflectometer (MIR) instruments. The transmitter can illuminate 8 different frequencies simultaneously within 55-75 GHz. Moreover, the receiver has the capability to amplify the reflected signal (>30 dB) while offering 10-30× reduction in noise temperature compared to current MIR instruments. Plasma diagnostics requires ultra-wideband (more than 20 GHz) operation which is approximately nine times wider bandwidth than the recent commercial impetus for communication systems. Current efforts are underway for gallium-arsenide monolithic microwave integrated circuit receiver chips at W-band (75-110 GHz) and F-band (90-140 GHz) permitting measurements at higher toroidal magnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA