Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38706137

RESUMO

Schizophrenia has been considered to exhibit sex-related clinical differences that might be associated with distinctly abnormal brain asymmetries between sexes. One hundred and thirty-two antipsychotic-naïve first-episode patients with schizophrenia and 150 healthy participants were recruited in this study to investigate whether cortical asymmetry would exhibit sex-related abnormalities in schizophrenia. After a 1-yr follow-up, patients were rescanned to obtain the effect of antipsychotic treatment on cortical asymmetry. Male patients were found to show increased lateralization index while female patients were found to exhibit decreased lateralization index in widespread regions when compared with healthy participants of the corresponding sex. Specifically, the cortical asymmetry of male and female patients showed contrary trends in the cingulate, orbitofrontal, parietal, temporal, occipital, and insular cortices. This result suggested male patients showed a leftward shift of asymmetry while female patients showed a rightward shift of asymmetry in these above regions that related to language, vision, emotion, and cognition. Notably, abnormal lateralization indices remained stable after antipsychotic treatment. The contrary trends in asymmetry between female and male patients with schizophrenia together with the persistent abnormalities after antipsychotic treatment suggested the altered brain asymmetries in schizophrenia might be sex-related disturbances, intrinsic, and resistant to the effect of antipsychotic therapy.


Assuntos
Antipsicóticos , Córtex Cerebral , Lateralidade Funcional , Imageamento por Ressonância Magnética , Esquizofrenia , Caracteres Sexuais , Humanos , Feminino , Masculino , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Adulto Jovem , Antipsicóticos/uso terapêutico , Lateralidade Funcional/fisiologia , Adolescente , Mapeamento Encefálico
2.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521993

RESUMO

Alzheimer's disease (AD) and mild cognitive impairment (MCI) both show abnormal resting-state functional connectivity (rsFC) of default mode network (DMN), but it is unclear to what extent these abnormalities are shared. Therefore, we performed a comprehensive meta-analysis, including 31 MCI studies and 20 AD studies. MCI patients, compared to controls, showed decreased within-DMN rsFC in bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), precuneus/posterior cingulate cortex (PCC), right temporal lobes, and left angular gyrus and increased rsFC between DMN and left inferior temporal gyrus. AD patients, compared to controls, showed decreased rsFC within DMN in bilateral mPFC/ACC and precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC between DMN and right dorsolateral prefrontal cortex. Conjunction analysis showed shared decreased rsFC in mPFC/ACC and precuneus/PCC. Compared to MCI, AD had decreased rsFC in left precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC in right temporal lobes. MCI and AD share a decreased within-DMN rsFC likely underpinning episodic memory deficits and neuropsychiatric symptoms, but differ in DMN rsFC alterations likely related to impairments in other cognitive domains such as language, vision, and execution. This may throw light on neuropathological mechanisms in these two stages of dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Rede de Modo Padrão , Disfunção Cognitiva/patologia , Giro do Cíngulo , Lobo Temporal/patologia , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico
3.
Bioconjug Chem ; 35(5): 703-714, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708860

RESUMO

Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.


Assuntos
Meios de Contraste , Fígado , Imageamento por Ressonância Magnética , Manganês , Manganês/química , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Meios de Contraste/síntese química , Humanos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/química , Camundongos , Complexos de Coordenação/química , Complexos de Coordenação/síntese química
4.
Psychol Med ; : 1-9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38505948

RESUMO

BACKGROUND: Epigenetic changes are plausible molecular sources of clinical heterogeneity in schizophrenia. A subgroup of schizophrenia patients with elevated inflammatory or immune-dysregulation has been reported by previous studies. However, little is known about epigenetic changes in genes related to immune activation in never-treated first-episode patients with schizophrenia (FES) and its consistency with that in treated long-term ill (LTS) patients. METHODS: In this study, epigenome-wide profiling with a DNA methylation array was applied using blood samples of both FES and LTS patients, as well as their corresponding healthy controls. Non-negative matrix factorization (NMF) and k -means clustering were performed to parse heterogeneity of schizophrenia, and the consistency of subtyping results from two cohorts. was tested. RESULTS: This study identified a subtype of patients in FES participants (47.5%) that exhibited widespread methylation level alterations of genes enriched in immune cell activity and a significantly higher proportion of neutrophils. This clustering of FES patients was validated in LTS patients, with high correspondence in epigenetic and clinical features across two cohorts. CONCLUSIONS: In summary, this study demonstrated a subtype of schizophrenia patients across both FES and LTS cohorts, defined by widespread alterations in methylation profile of genes related to immune function and distinguishing clinical features. This finding illustrates the promise of novel treatment strategies targeting immune dysregulation for a subpopulation of schizophrenia patients.

5.
J Magn Reson Imaging ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946400

RESUMO

Schizophrenia is a severe mental illness that significantly impacts the lives of affected individuals and with increasing mortality rates. Early detection and intervention are crucial for improving outcomes but the lack of validated biomarkers poses great challenges in such efforts. The use of magnetic resonance imaging (MRI) in schizophrenia enables the investigation of the disorder's etiological and neuropathological substrates in vivo. After decades of research, promising findings of MRI have been shown to aid in screening high-risk individuals and predicting illness onset, and predicting symptoms and treatment outcomes of schizophrenia. The integration of machine learning and deep learning techniques makes it possible to develop intelligent diagnostic and prognostic tools with extracted or selected imaging features. In this review, we aimed to provide an overview of current progress and prospects in establishing clinical utility of MRI in schizophrenia. We first provided an overview of MRI findings of brain abnormalities that might underpin the symptoms or treatment response process in schizophrenia patients. Then, we summarized the ongoing efforts in the computer-aided utility of MRI in schizophrenia and discussed the gap between MRI research findings and real-world applications. Finally, promising pathways to promote clinical translation were provided. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

6.
Brain Behav Immun ; 115: 557-564, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972880

RESUMO

BACKGROUND: Accumulating evidence suggests that inflammatory dysregulation both in blood and the brain is implicated in the pathogenesis of schizophrenia. Alterations in peripheral cytokines are not evident in all patients and there may be discrete altered inflammatory subgroups in schizophrenia. Recent studies using a novel and in vivo free-water imaging to detect inflammatory processes, have shown increased free water in white matter in schizophrenia. However, no studies to date have investigated the free water alterations in different inflammatory subgroups in schizophrenia. METHODS: Forty-four patients with schizophrenia and 49 controls were recruited. The serum levels of interleukin-1 beta (IL-1ß), IL-6, IL-10, and IL-12p70 were measured and used for cluster analysis with K-means and hierarchical algorithms. Diffusion tensor imaging (DTI) images were collected for all participants and voxel-wise free water and fractional anisotropy of tissue (FA-t) were compared between groups with Randomise running in FSL. Partial correlation analysis was employed to explore the association of the peripheral cytokine levels with free water. RESULTS: We identified two statistically quantifiable discrete subgroups of patients based on the cluster analysis of cytokine measures. The peripheral levels of IL-1ß (P < 0.001), IL-10 (P = 0.041), and IL-12p70 (P < 0.001) showed significant differences between the two different inflammatory subgroups. In the inflammatory subgroup with a predominantly higher IL-1ß level, increased free water values in white matter were found mainly in the left posterior limb of the internal capsule, posterior corona radiata, and partly in the left sagittal stratum. These affected areas did not overlap with the regions that showed significant free water differences between patients and healthy controls. In the inflammatory subgroup with lower IL-1ß levels, peripheral IL-1ß was significantly associated with free water values in white matter while no such association was detected in the patient group. CONCLUSIONS: Localized free water differences were demonstrated between the two identified inflammatory subgroups in our data, and free water appears to be a feasible in vivo neuroimaging biomarker guiding the target of inflammatory intervention and development of new therapeutic strategies in an individualized manner in schizophrenia.


Assuntos
Esquizofrenia , Substância Branca , Humanos , Esquizofrenia/complicações , Imagem de Tensor de Difusão/métodos , Interleucina-10 , Fibras Nervosas Mielinizadas , Encéfalo/patologia , Substância Branca/patologia , Citocinas , Interleucina-12 , Água
7.
Mol Psychiatry ; 28(3): 1079-1089, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653677

RESUMO

There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = -0.077, pFWE = 0.037; right: d = -0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = -0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = -0.141, pFWE < 0.001; right: d = -0.158, pFWE < 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.


Assuntos
Fobia Social , Adulto , Adolescente , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Ansiedade , Neuroimagem/métodos
8.
Mol Psychiatry ; 28(11): 4853-4866, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737484

RESUMO

Exposure to preadult environmental exposures may have long-lasting effects on mental health by affecting the maturation of the brain and personality, two traits that interact throughout the developmental process. However, environment-brain-personality covariation patterns and their mediation relationships remain unclear. In 4297 healthy participants (aged 18-30 years), we combined sparse multiple canonical correlation analysis with independent component analysis to identify the three-way covariation patterns of 59 preadult environmental exposures, 760 adult brain imaging phenotypes, and five personality traits, and found two robust environment-brain-personality covariation models with sex specificity. One model linked greater stress and less support to weaker functional connectivity and activity in the default mode network, stronger activity in subcortical nuclei, greater thickness and volume in the occipital, parietal and temporal cortices, and lower agreeableness, consciousness and extraversion as well as higher neuroticism. The other model linked higher urbanicity and better socioeconomic status to stronger functional connectivity and activity in the sensorimotor network, smaller volume and surface area and weaker functional connectivity and activity in the medial prefrontal cortex, lower white matter integrity, and higher openness to experience. We also conducted mediation analyses to explore the potential bidirectional mediation relationships between adult brain imaging phenotypes and personality traits with the influence of preadult environmental exposures and found both environment-brain-personality and environment-personality-brain pathways. We finally performed moderated mediation analyses to test the potential interactions between macro- and microenvironmental exposures and found that one category of exposure moderated the mediation pathways of another category of exposure. These results improve our understanding of the effects of preadult environmental exposures on the adult brain and personality traits and may facilitate the design of targeted interventions to improve mental health by reducing the impact of adverse environmental exposures.


Assuntos
Encéfalo , Personalidade , Adulto , Humanos , Neuroticismo , Mapeamento Encefálico , Exposição Ambiental
9.
Eur Radiol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627290

RESUMO

OBJECTIVES: To build self-supervised foundation models for multicontrast MRI of the whole brain and evaluate their efficacy in assisting diagnosis of brain tumors. METHODS: In this retrospective study, foundation models were developed using 57,621 enhanced head MRI scans through self-supervised learning with a pretext task of cross-contrast context restoration with two different content dropout schemes. Downstream classifiers were constructed based on the pretrained foundation models and fine-tuned for brain tumor detection, discrimination, and molecular status prediction. Metrics including accuracy, sensitivity, specificity, and area under the ROC curve (AUC) were used to evaluate the performance. Convolutional neural networks trained exclusively on downstream task data were employed for comparative analysis. RESULTS: The pretrained foundation models demonstrated their ability to extract effective representations from multicontrast whole-brain volumes. The best classifiers, endowed with pretrained weights, showed remarkable performance with accuracies of 94.9, 92.3, and 80.4%, and corresponding AUC values of 0.981, 0.972, and 0.852 on independent test datasets in brain tumor detection, discrimination, and molecular status prediction, respectively. The classifiers with pretrained weights outperformed the convolutional classifiers trained from scratch by approximately 10% in terms of accuracy and AUC across all tasks. The saliency regions in the correctly predicted cases are mainly clustered around the tumors. Classifiers derived from the two dropout schemes differed significantly only in the detection of brain tumors. CONCLUSIONS: Foundation models obtained from self-supervised learning have demonstrated encouraging potential for scalability and interpretability in downstream brain tumor-related tasks and hold promise for extension to neurological diseases with diffusely distributed lesions. CLINICAL RELEVANCE STATEMENT: The application of our proposed method to the prediction of key molecular status in gliomas is expected to improve treatment planning and patient outcomes. Additionally, the foundation model we developed could serve as a cornerstone for advancing AI applications in the diagnosis of brain-related diseases.

10.
Cereb Cortex ; 33(14): 8876-8889, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37197764

RESUMO

Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease. Numerous voxel-based morphometry (VBM) and resting-state fMRI (rs-fMRI) studies have provided strong evidence of abnormalities in the structure and intrinsic function of brain regions in MCI. Studies have recently begun to explore their association but have not employed systematic information in this pursuit. Herein, a multimodal meta-analysis was performed, which included 43 VBM datasets (1,247 patients and 1,352 controls) of gray matter volume (GMV) and 42 rs-fMRI datasets (1,468 patients and 1,605 controls) that combined 3 metrics: amplitude of low-frequency fluctuation, the fractional amplitude of low-frequency fluctuation, and regional homogeneity. Compared to controls, patients with MCI displayed convergent reduced regional GMV and altered intrinsic activity, mainly in the default mode network and salience network. Decreased GMV alone in ventral medial prefrontal cortex and altered intrinsic function alone in bilateral dorsal anterior cingulate/paracingulate gyri, right lingual gyrus, and cerebellum were identified, respectively. This meta-analysis investigated complex patterns of convergent and distinct brain alterations impacting different neural networks in MCI patients, which contributes to a further understanding of the pathophysiology of MCI.


Assuntos
Encéfalo , Disfunção Cognitiva , Humanos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral , Córtex Pré-Frontal , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem
11.
Cereb Cortex ; 33(12): 7619-7626, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36916957

RESUMO

Schizophrenia is thought to be a neurodevelopmental disease with high genetic heritability, and evidence from neuroimaging studies has consistently shown widespread cortical local gyrification index (LGI) alterations; however, genes accounting for LGI alterations in schizophrenia remain unknown. The present study examined the LGI alterations in first-episode antipsychotic-naive schizophrenia compared with controls (235 patients and 214 controls); transcription-neuroimaging association analysis was used to evaluate the relationship between LGI deficits and specific risk genes. The expression profiles of 232 schizophrenia risk genes were extracted from six donated normal brains from the Allen Human Brain Atlas database. The correlation between LGI alterations and clinical symptoms was also tested. We found lower LGI values involved in frontotemporal regions and limbic systems. Nonparametric correlation analysis showed that 83 risk genes correlated with the hypogyrification pattern in schizophrenia. These identified risk genes were functionally enriched for the development of the central nervous system. The LGI in the left superior temporal gyrus was negatively associated with Positive and Negative Syndrome Scale negative symptoms. In summary, the present study provides a set of risk genes possibly related to the hypogyrification pattern in antipsychotic-naive first-episode schizophrenia, which could help to unveil the neurobiological underpinnings of cortical impairments in early-stage schizophrenia.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Imageamento por Ressonância Magnética/métodos , Encéfalo , Lobo Temporal
12.
Cereb Cortex ; 33(4): 1527-1535, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36790361

RESUMO

Understanding how structural connectivity alterations affect aberrant dynamic function using network control theory will provide new mechanistic insights into the pathophysiology of schizophrenia. The study included 140 drug-naive schizophrenia patients and 119 healthy controls (HCs). The average controllability (AC) quantifying capacity of brain regions/networks to shift the system into easy-to-reach states was calculated based on white matter connectivity and was compared between patients and HCs as well as functional network topological and dynamic properties. The correlation analysis between AC and duration of untreated psychosis (DUP) were conducted to characterize the controllability progression pattern without treatment effects. Relative to HCs, patients exhibited reduced AC in multiple nodes, mainly distributed in default mode network (DMN), visual network (VN), and subcortical regions, and increased AC in somatomotor network. These networks also had impaired functional topology and increased temporal variability in dynamic functional connectivity analysis. Longer DUP was related to greater reductions of AC in VN and DMN. The current study highlighted potential structural substrates underlying altered functional dynamics in schizophrenia, providing a novel understanding of the relationship of anatomic and functional network alterations.


Assuntos
Esquizofrenia , Substância Branca , Humanos , Esquizofrenia/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
13.
Cereb Cortex ; 33(10): 5957-5967, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36513368

RESUMO

Alterations of radiomic features (RFs) in gray matter are observed in schizophrenia, of which the results may be limited by small study samples and confounding effects of drug therapies. We tested for RFs alterations of gray matter in never-treated first-episode schizophrenia (NT-FES) patients and examined their associations with known gene expression profiles. RFs were examined in the first sample with 197 NT-FES and 178 healthy controls (HCs) and validated in the second independent sample (90 NT-FES and 74 HCs). One-year follow-up data were available from 87 patients to determine whether RFs were associated with treatment outcomes. Associations between identified RFs in NT-FES and gene expression profiles were evaluated. NT-FES exhibited alterations of 30 RFs, with the greatest involvement of microstructural heterogeneity followed by measures of brain region shape. The identified RFs were mainly located in the central executive network, frontal-temporal network, and limbic system. Two baseline RFs with the involvement of microstructural heterogeneity predicted treatment response with moderate accuracy (78% for the first sample, 70% for the second sample). Exploratory analyses indicated that RF alterations were spatially related to the expression of schizophrenia risk genes. In summary, the present findings link brain abnormalities in schizophrenia with molecular features and treatment response.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/complicações , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Encéfalo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38832962

RESUMO

Research on individuals with a younger onset age of schizophrenia is important for identifying neurobiological processes derived from the interaction of genes and the environment that lead to the manifestation of schizophrenia. Schizophrenia has long been recognized as a disorder of dysconnectivity, but it is largely unknown how brain connectivity changes are associated with psychotic symptoms. Twenty-one adolescent-onset schizophrenia (AOS) patients and 21 matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) was used to investigate local brain connectivity alterations in AOS. Regions with significant ReHo changes in patients were selected as "seeds" for further functional connectivity (FC) analysis and Granger causality analysis (GCA), and associations of the obtained functional brain measures with psychotic symptoms in patients with AOS were examined. Compared with HCs, AOS patients showed significantly increased ReHo in the right middle temporal gyrus (MTG), which was positively correlated with PANSS-positive scores, PSYRATS-delusion scores and auditory hallucination scores. With the MTG as the seed, lower connectivity with the bilateral postcentral gyrus (PCG) and higher connectivity with the right precuneus were observed in patients. The reduced FC between the right MTG and bilateral PCG was significantly and positively correlated with hallucination scores. GCA indicated decreased Granger causality from the right MTG to the left middle frontal gyrus (MFG) and from the right MFG to the right MTG in AOS patients, but such effects did not significantly associate with psychotic symptoms. Abnormalities in the connectivity within the MTG and its connectivity with other networks were identified and were significantly correlated with hallucination and delusion ratings. This region may be a key neural substrate of psychotic symptoms in AOS.

15.
Nano Lett ; 23(18): 8505-8514, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37695636

RESUMO

Considerable efforts have been made to develop nanoparticle-based magnetic resonance contrast agents (CAs) with high relaxivity. The prolonged rotational correlation time (τR) induced relaxivity enhancement is commonly recognized, while the effect of the water coordination numbers (q) on the relaxivity of nanoparticle-based CAs gets less attention. Herein, we first investigated the relationship between T1 relaxivity (r1) and q in manganese-based hybrid micellar CAs and proposed a strategy to enhance the relaxivity by increasing q. Hybrid micelles with different ratios of amphiphilic manganese complex (MnL) and DSPE-PEG2000 were prepared, whose q values were evaluated by Oxygen-17-NMR spectroscopy. Micelles with lower manganese doping density exhibit increased q and enhanced relaxivity, corroborating the conception. In vivo sentinel lymph node (SLN) imaging demonstrates that DSPE-PEG/MnL micelles could differentiate metastatic SLN from inflammatory LN. Our strategy makes it feasible for relaxivity enhancement by modulating q, providing new approaches for the structural design of high-performance hybrid micellar CAs.


Assuntos
Micelas , Água , Manganês/química , Linfografia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Meios de Contraste/química
16.
Hum Brain Mapp ; 44(2): 779-789, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206321

RESUMO

Although a large number of case-control statistical and machine learning studies have been conducted to investigate structural brain changes in schizophrenia, how best to measure and characterize structural abnormalities for use in classification algorithms remains an open question. In the current study, a convolutional 3D autoencoder specifically designed for discretized volumes was constructed and trained with segmented brains from 477 healthy individuals. A cohort containing 158 first-episode schizophrenia patients and 166 matched controls was fed into the trained autoencoder to generate auto-encoded morphological patterns. A classifier discriminating schizophrenia patients from healthy controls was built using 80% of the samples in this cohort by automated machine learning and validated on the remaining 20% of the samples, and this classifier was further validated on another independent cohort containing 77 first-episode schizophrenia patients and 58 matched controls acquired at a different resolution. This specially designed autoencoder allowed a satisfactory recovery of the input. With the same feature dimension, the classifier trained with autoencoded features outperformed the classifier trained with conventional morphological features by about 10% points, achieving 73.44% accuracy and 0.8 AUC on the internal validation set and 71.85% accuracy and 0.77 AUC on the external validation set. The use of features automatically learned from the segmented brain can better identify schizophrenia patients from healthy controls, but there is still a need for further improvements to establish a clinical diagnostic marker. However, with a limited sample size, the method proposed in the current study shed insight into the application of deep learning in psychiatric disorders.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Algoritmos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
17.
Psychol Med ; 53(9): 4083-4093, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392995

RESUMO

BACKGROUND: Identification of treatment-specific predictors of drug therapies for bipolar disorder (BD) is important because only about half of individuals respond to any specific medication. However, medication response in pediatric BD is variable and not well predicted by clinical characteristics. METHODS: A total of 121 youth with early course BD (acute manic/mixed episode) were prospectively recruited and randomized to 6 weeks of double-blind treatment with quetiapine (n = 71) or lithium (n = 50). Participants completed structural magnetic resonance imaging (MRI) at baseline before treatment and 1 week after treatment initiation, and brain morphometric features were extracted for each individual based on MRI scans. Positive antimanic treatment response at week 6 was defined as an over 50% reduction of Young Mania Rating Scale scores from baseline. Two-stage deep learning prediction model was established to distinguish responders and non-responders based on different feature sets. RESULTS: Pre-treatment morphometry and morphometric changes occurring during the first week can both independently predict treatment outcome of quetiapine and lithium with balanced accuracy over 75% (all p < 0.05). Combining brain morphometry at baseline and week 1 allows prediction with the highest balanced accuracy (quetiapine: 83.2% and lithium: 83.5%). Predictions in the quetiapine and lithium group were found to be driven by different morphometric patterns. CONCLUSIONS: These findings demonstrate that pre-treatment morphometric measures and acute brain morphometric changes can serve as medication response predictors in pediatric BD. Brain morphometric features may provide promising biomarkers for developing biologically-informed treatment outcome prediction and patient stratification tools for BD treatment development.


Assuntos
Antipsicóticos , Transtorno Bipolar , Adolescente , Humanos , Criança , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Lítio/uso terapêutico , Estudos Prospectivos , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Método Duplo-Cego , Resultado do Tratamento , Mania , Encéfalo/diagnóstico por imagem
18.
Biomacromolecules ; 24(12): 5998-6008, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37945532

RESUMO

MRI contrast agents with high kinetic stability and relaxivity are the key objectives in the field. We previously reported that Gd-DOTA backboned-bound branched polymers possess high kinetic stability and significantly increased T1 relaxivity than traditional branched polymer contrast agents. In this work, non-PEGylated and PEGylated amphiphilic Gd-DOTA backboned-bound branched polymers [P(GdDOTA-C6), P(GdDOTA-C10), mPEG-P(GdDOTA-C6), and mPEG-P(GdDOTA-C10)] were obtained by sequential introduction of rigid carbon chains (1,6-hexamethylenediamine or 1,10-diaminodecane) and mPEG into the structure of Gd-DOTA backboned-bound branched polymers. It is found that the introduction of both rigid carbon chains, especially the longer one, and mPEG can increase the kinetic stability and T1 relaxivity of Gd-DOTA backboned-bound branched polymers. Among them, mPEG-P(GdDOTA-C10) possesses the highest kinetic stability (significantly higher than those of linear Gd-DTPA and cyclic Gd-DOTA-butrol) and T1 relaxivity (42.9 mM-1 s-1, 1.5 T), 11 times that of Gd-DOTA and 1.4 times that of previously reported Gd-DOTA backboned-bound branched polymers. In addition, mPEG-P(GdDOTA-C10) showed excellent MRA effect in cardiovascular and hepatic vessels at a dose (0.025 or 0.05 mmol Gd/kg BW) far below the clinical range (0.1-0.3 mmol Gd/kg BW). Overall, effective branched-polymer-based contrast agents can be obtained by a strategy in which rigid carbon chains and PEG were introduced into the structure of Gd-DOTA backbone-bound branched polymers, resulting in excellent kinetic stability and enhanced T1 relaxivity.


Assuntos
Compostos Organometálicos , Polímeros , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Polietilenoglicóis , Compostos Organometálicos/química , Carbono
19.
J Psychiatry Neurosci ; 48(1): E34-E49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36750240

RESUMO

BACKGROUND: Hippocampal disturbances are important in the pathophysiology of both schizophrenia and major depressive disorder (MDD). Imaging studies have shown selective volume deficits across hippocampal subfields in both disorders. We aimed to investigate whether these volumetric alterations in hippocampal subfields are shared or divergent across disorders. METHODS: We searched PubMed and Embase from database inception to May 8, 2021. We identified MRI studies in patients with schizophrenia, MDD or both, in which hippocampal subfield volumes were measured. We excluded nonoriginal, animal or postmortem studies, and studies that used other imaging modalities or overlapping data. We conducted a network meta-analysis to estimate and contrast alterations in subfield volumes in the 2 disorders. RESULTS: We identified 45 studies that met the initial criteria for systematic review, of which 15 were eligible for network metaanalysis. Compared to healthy controls, patients with schizophrenia had reduced volumes in the bilateral cornu ammonis (CA) 1, granule cell layer of the dentate gyrus, subiculum, parasubiculum, molecular layer, hippocampal tail and hippocampus-amygdala transition area (HATA); in the left CA4 and presubiculum; and in the right fimbria. Patients with MDD had decreased volumes in the left CA3 and CA4 and increased volumes in the right HATA compared to healthy controls. The bilateral parasubiculum and right HATA were smaller in patients with schizophrenia than in patients with MDD. LIMITATIONS: We did not investigate medication effects because of limited information. Study heterogeneity was noteworthy in direct comparisons between patients with MDD and healthy controls. CONCLUSION: The volumes of multiple hippocampal subfields are selectively altered in patients with schizophrenia and MDD, with overlap and differentiation in subfield alterations across disorders. Rigorous head-to-head studies are needed to validate our findings.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Metanálise em Rede , Hipocampo , Imageamento por Ressonância Magnética/métodos , Tamanho do Órgão/fisiologia
20.
Eur Radiol ; 33(10): 6648-6658, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37186214

RESUMO

OBJECTIVES: To construct and evaluate a gated high-resolution convolutional neural network for detecting and segmenting brain metastasis (BM). METHODS: This retrospective study included craniocerebral MRI scans of 1392 patients with 14,542 BMs and 200 patients with no BM between January 2012 and April 2022. A primary dataset including 1000 cases with 11,686 BMs was employed to construct the model, while an independent dataset including 100 cases with 1069 BMs from other hospitals was used to examine the generalizability. The potential of the model for clinical use was also evaluated by comparing its performance in BM detection and segmentation to that of radiologists, and comparing radiologists' lesion detecting performances with and without model assistance. RESULTS: Our model yielded a recall of 0.88, a dice similarity coefficient (DSC) of 0.90, a positive predictive value (PPV) of 0.93 and a false positives per patient (FP) of 1.01 in the test set, and a recall of 0.85, a DSC of 0.89, a PPV of 0.93, and a FP of 1.07 in dataset from other hospitals. With the model's assistance, the BM detection rates of 4 radiologists improved significantly, ranging from 5.2 to 15.1% (all p < 0.001), and also for detecting small BMs with diameter ≤ 5 mm (ranging from 7.2 to 27.0%, all p < 0.001). CONCLUSIONS: The proposed model enables accurate BM detection and segmentation with higher sensitivity and less time consumption, showing the potential to augment radiologists' performance in detecting BM. CLINICAL RELEVANCE STATEMENT: This study offers a promising computer-aided tool to assist the brain metastasis detection and segmentation in routine clinical practice for cancer patients. KEY POINTS: • The GHR-CNN could accurately detect and segment BM on contrast-enhanced 3D-T1W images. • The GHR-CNN improved the BM detection rate of radiologists, including the detection of small lesions. • The GHR-CNN enabled automated segmentation of BM in a very short time.


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Humanos , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA