Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(6): 617-624, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760533

RESUMO

Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM+) and IgA+ memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K. pneumoniae serotypes. However, cross-specificity was not limited to K. pneumoniae, as K. pneumoniae-specific antibodies recognized diverse intestinal microbes and neutralized not only K. pneumoniae LPS but also non-K. pneumoniae LPS. Our data suggest that the recognition of minimal glycan epitopes abundantly expressed on microbial surfaces might serve as an efficient humoral immunological mechanism to control invading pathogens and the large diversity of the human microbiota with a limited set of cross-specific antibodies.


Assuntos
Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos/imunologia , Klebsiella pneumoniae/imunologia , Antígenos O/imunologia , Anticorpos Monoclonais/imunologia , Reações Cruzadas/imunologia , Humanos
2.
Nature ; 598(7882): 657-661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646015

RESUMO

Dimeric IgA secreted across mucous membranes in response to nonpathogenic taxa of the microbiota accounts for most antibody production in mammals. Diverse binding specificities can be detected within the polyclonal mucosal IgA antibody response1-10, but limited monoclonal hybridomas have been studied to relate antigen specificity or polyreactive binding to functional effects on microbial physiology in vivo11-17. Here we use recombinant dimeric monoclonal IgAs (mIgAs) to finely map the intestinal plasma cell response to microbial colonization with a single microorganism in mice. We identify a range of antigen-specific mIgA molecules targeting defined surface and nonsurface membrane antigens. Secretion of individual dimeric mIgAs targeting different antigens in vivo showed distinct alterations in the function and metabolism of intestinal bacteria, largely through specific binding. Even in cases in which the same microbial antigen is targeted, microbial metabolic alterations differed depending on IgA epitope specificity. By contrast, bacterial surface coating generally reduced motility and limited bile acid toxicity. The overall intestinal IgA response to a single microbe therefore contains parallel components with distinct effects on microbial carbon-source uptake, bacteriophage susceptibility, motility and membrane integrity.


Assuntos
Imunoglobulina A Secretora/imunologia , Intestinos/imunologia , Microbiota/imunologia , Plasmócitos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Escherichia coli , Vida Livre de Germes , Camundongos , Camundongos Endogâmicos C57BL , Porinas/imunologia
3.
J Biol Chem ; 296: 100299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460651

RESUMO

The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galß1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.


Assuntos
Galactosiltransferases/química , Globosídeos/química , Toxina Shiga I/química , Triexosilceramidas/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animais , Sítios de Ligação , Células CHO , Sequência de Carboidratos , Cricetulus , Escherichia coli Êntero-Hemorrágica/química , Escherichia coli Êntero-Hemorrágica/patogenicidade , Galactose/química , Galactose/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Expressão Gênica , Globosídeos/biossíntese , Globosídeos/metabolismo , Glucose/química , Glucose/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Triexosilceramidas/biossíntese
4.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233098

RESUMO

Streptococcus gallolyticus subspecies gallolyticus, known as Streptococcus bovis biotype I, is a facultative pathogen causing bacteraemia, infective endocarditis and sepsis that has been linked with colorectal cancer (CRC), but this correlation is still unclear. Bacterial surface structures, such as the major sugar antigens exposed to the outside of the microorganism, are potential virulence factors. One of the primary sugar antigens loosely attached to the cell surface is the biofilm component, exopolysaccharide (EPS). EPSs of S. bovis are poorly characterized molecules. Until now, only one S. macedonicus Sc136 EPS structure was known to the entire S. bovis group. The S. gallolyticus DSM 13808 EPS was investigated by chemical analysis, mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The hexasaccharide repeating unit of the EPS, containing four Glc, two Rha residues and one phosphate group, has been described " →6)-α-d-Glcp-(1→3)-ß-l-Rhap-(1→4)-ß-d-Glcp-(1→3)-[ß-d-Glcp-(1→2)]-α-l-Rhap-(1→2)-α-d-Glcp-(1→P→".


Assuntos
Bacteriemia , Infecções Estreptocócicas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Fosfatos , Infecções Estreptocócicas/microbiologia , Açúcares , Fatores de Virulência
5.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445776

RESUMO

Enterobacterial common antigen (ECA) is a conserved antigen expressed by enterobacteria. It is built by trisaccharide repeating units: →3)-α-D-Fucp4NAc-(1→4)-ß-D-ManpNAcA-(1→4)-α-D-GlcpNAc-(1→ and occurs in three forms: as surface-bound linear polysaccharides linked to a phosphoglyceride (ECAPG) or lipopolysaccharide - endotoxin (ECALPS), and cyclic form (ECACYC). ECA maintains, outer membrane integrity, immunogenicity, and viability of enterobacteria. A supernatant obtained after LPS ultracentrifugation was reported as a source for ECA isolation, but it has never been assessed for detailed composition besides ECACYC. We used mild acid hydrolysis and gel filtration, or zwitterionic-hydrophilic interaction liquid (ZIC®HILIC) chromatography combined with mass spectrometry for purification, fractionation, and structural analysis of rough Shigella sonnei and Escherichia coli R1 and K12 crude LPS preparations. Presented work is the first report concerning complex characteristic of all ECA forms present in LPS-derived supernatants. We demonstrated high heterogeneity of the supernatant-derived ECA that contaminate LPS purified by ultracentrifugation. Not only previously reported O-acetylated tetrameric, pentameric, and hexameric ECACYC have been identified, but also devoid of lipid moiety linear ECA built from 7 to 11 repeating units. Described results were common for all selected strains. The origin of linear ECA is discussed against the current knowledge about ECAPG and ECALPS.


Assuntos
Antígenos de Bactérias/química , Enterobacteriaceae/química , Lipopolissacarídeos/química , Cromatografia/métodos , Fibras na Dieta , Endotoxinas/química , Escherichia coli/química , Hidrólise , Espectrometria de Massas/métodos , Polissacarídeos/química , Shigella sonnei/química
6.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768992

RESUMO

Klebsiella pneumoniae is considered one of the most critical multidrug-resistant pathogens and urgently requires new therapeutic strategies. Capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) are the major virulence factors protecting K. pneumoniae against the immune response and thus may be targeted by phage-based therapeutics such as polysaccharides-degrading enzymes. Since the emergence of resistance to antibacterials is generally considered undesirable, in this study, the genetic and phenotypic characteristics of resistance to the phage-borne CPS-degrading depolymerase and its effect on K. pneumoniae virulence were investigated. The K63 serotype targeting depolymerase (KP36gp50) derived from Klebsiella siphovirus KP36 was used as the selective agent during the treatment of K. pneumoniae 486 biofilm. Genome-driven examination combined with the surface polysaccharide structural analysis of resistant mutant showed the point mutation and frameshift in the wbaP gene located within the cps gene cluster, resulting in the loss of the capsule. The sharp decline in the yield of CPS was accompanied by the production of a larger amount of smooth LPS. The modification of the surface polysaccharide layers did not affect bacterial fitness nor the insensitivity to serum complement; however, it made bacteria more prone to phagocytosis combined with the higher adherence and internalization to human lung epithelial cells. In that context, it was showed that the emerging resistance to the antivirulence agent (phage-borne capsule depolymerase) results in beneficial consequences, i.e., the sensitization to the innate immune response.


Assuntos
Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Klebsiella pneumoniae/genética , Família Multigênica/genética , Mutação/genética , Células A549 , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/microbiologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Sorogrupo , Virulência/genética , Fatores de Virulência/genética
7.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839412

RESUMO

Enterobacterial common antigen (ECA) is a conserved surface antigen characteristic for Enterobacteriaceae. It is consisting of trisaccharide repeating unit, →3)-α-d-Fucp4NAc-(1→4)-ß-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, where prevailing forms include ECA linked to phosphatidylglycerol (ECAPG) and cyclic ECA (ECACYC). Lipopolysaccharide (LPS)-associated form (ECALPS) has been proved to date only for rough Shigella sonnei phase II. Depending on the structure organization, ECA constitutes surface antigen (ECAPG and ECALPS) or maintains the outer membrane permeability barrier (ECACYC). The existence of LPS was hypothesized in the 1960-80s on the basis of serological observations. Only a few Escherichia coli strains (i.e., R1, R2, R3, R4, and K-12) have led to the generation of anti-ECA antibodies upon immunization, excluding ECAPG as an immunogen and conjecturing ECALPS as the only immunogenic form. Here, we presented a structural survey of ECALPS in E. coli R1, R2, R3, and R4 to correlate previous serological observations with the presence of ECALPS. The low yields of ECALPS were identified in the R1, R2, and R4 strains, where ECA occupied outer core residues of LPS that used to be substituted by O-specific polysaccharide in the case of smooth LPS. Previously published observations and hypotheses regarding the immunogenicity and biosynthesis of ECALPS were discussed and correlated with presented herein structural data.


Assuntos
Antígenos de Bactérias/química , Membrana Celular/química , Escherichia coli/química , Lipopolissacarídeos/química , Antígenos de Bactérias/isolamento & purificação , Sequência de Carboidratos , Escherichia coli/classificação , Lipopolissacarídeos/isolamento & purificação , Fosfatidilgliceróis/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947917

RESUMO

Plesiomonas shigelloides is a Gram-negative, rod-shaped bacterium which causes foodborne intestinal infections, including gastroenteritis. It is one of the most frequent causes of travellers' diarrhoea. Lipopolysaccharide (LPS, endotoxin), an important virulence factor of the species, is in most cases characterised by a smooth character, demonstrated by the presence of all regions, such as lipid A, core oligosaccharide, and O-specific polysaccharide, where the latter part determines O-serotype. P. shigelloides LPS is still a poorly characterised virulence factor considering a "translation" of the particular O-serotype into chemical structure. To date, LPS structure has only been elucidated for 15 strains out of 102 O-serotypes. Structures of the new O-specific polysaccharide and core oligosaccharide of P. shigelloides from the Czechoslovak National Collection of Type Cultures CNCTC 90/89 LPS (O22), investigated by chemical analysis, mass spectrometry, and 1H,13C nuclear magnetic resonance (NMR) spectroscopy, have now been reported. The pentasaccharide repeating unit of the O-specific polysaccharide is built of one d-QuipNAc and is rich in four d-GalpNAcAN residues. Moreover, the new core oligosaccharide shares common features of other P. shigelloides endotoxins, i.e., the lack of phosphate groups and the presence of uronic acids.


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Plesiomonas/química , Sequência de Carboidratos , Lipopolissacarídeos/isolamento & purificação , Ressonância Magnética Nuclear Biomolecular , Antígenos O/isolamento & purificação , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911792

RESUMO

Klebsiella pneumoniae is a nosocomial pathogen, pointed out by the World Helth Organisation (WHO) as "critical" regarding the highly limited options of treatment. Lipopolysaccharide (LPS, O-antigen) and capsular polysaccharide (K-antigen) are its virulence factors and surface antigens, determining O- and K-serotypes and encoded by O- or K-loci. They are promising targets for antibody-based therapies (vaccines and passive immunization) as an alternative to antibiotics. To make such immunotherapy effective, knowledge about O/K-antigen structures, drift, and distribution among clinical isolates is needed. At present, the structural analysis of O-antigens is efficiently supported by bioinformatics. O- and K-loci-based genotyping by polymerase chain reaction (PCR) or whole genome sequencing WGS has been proposed as a diagnostic tool, including the Kaptive tool available in the public domain. We analyzed discrepancies for O2 serotyping between Kaptive-based predictions (O2 variant 2 serotype) and the actual phenotype (O2 variant 1) for two K. pneumoniae clinical isolates. Identified length discrepancies from the reference O-locus resulted from insertion sequences (ISs) within rfb regions of the O-loci. In silico analysis of 8130 O1 and O2 genomes available in public databases indicated a broader distribution of ISs in rfbs that may influence the actual O-antigen structure. Our results show that current high-throughput genotyping algorithms need to be further refined to consider the effects of ISs on the LPS O-serotype.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Antígenos O/genética , Sorotipagem/métodos , Antígenos de Bactérias/imunologia , Antígenos de Superfície/imunologia , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lipopolissacarídeos/química , Antígenos O/imunologia , Fenótipo , Sorogrupo , Fatores de Virulência
10.
Int J Med Microbiol ; 306(4): 212-21, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27141819

RESUMO

The pattern recognition molecules (PRMs) able to activate complement via the lectin pathway are suspected to be involved in the interaction between pathogenic Mycobacteria and the host immune response. Recently, we have found strong interactions between 25 and 35kDa mycobacterial cell fractions and mannose-binding lectin (MBL) and ficolins. Here we demonstrate that two biologically important mycobacterial structures, mannosylated lipoarabinomannan (ManLAM) and the antigen 85 (Ag85) complex, induce activation of the lectin pathway of complement. The strong interaction of recombinant MBL with purified ManLAM was confirmed, but no binding of recombinant ficolins (ficolin-1, -2, -3) with this structure was observed. Interestingly, all PRMs tested reacted with the mycobacterial antigen 85 (Ag85) complex. Based on the use of specific inhibitors (mannan for MBL, acetylated bovine serum albumin for ficolin-1 and -2, Hafnia alvei PCM 1200 lipopolysaccharide for ficolin-3), we concluded that carbohydrate-recognition (MBL) and fibrinogen-like domains (ficolins) were involved in these interactions. Our results indicate that the mycobacterial antigen 85 complex is a target for ficolins and MBL. Furthermore, those PRMs also bound to fibronectin and therefore might influence the Ag85 complex-dependent interaction of Mycobacterium with the extracellular matrix.


Assuntos
Aciltransferases/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Lectinas/metabolismo , Lectina de Ligação a Manose/metabolismo , Mycobacterium/imunologia , Animais , Humanos , Lipopolissacarídeos/metabolismo , Camundongos , Ficolinas
11.
Int J Med Microbiol ; 306(2): 89-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26723873

RESUMO

Klebsiella pneumoniae ST258 is a globally disseminated, extremely drug resistant, nosocomial clone with limited treatment options. We show that the vast majority of ST258 isolates express modified d-galactan-I lipopolysaccharide O-antigen, termed hereinafter as D-galactan-III. The genetic determinant required for galactan-III synthesis was identified as a distinct operon adjacent to the rfb (wb) locus encoding D-galactan-I synthesis. The three genes within the operon encode predicted glycosyltransferases. Testing an isogenic transformant pair revealed that expression of D-galactan-III, in comparison to D-galactan-I, conferred improved survival in the presence of human serum. Eighty-three percent of the more than 200 ST258 draft genome sequences currently available carries the corresponding operon and hence these isolates are predicted to express galactan-III antigens. A D-galactan-III specific monoclonal antibody (mAb) was shown to bind to extracted LPS from a panel of ST258 isolates. The same mAb confirmed accessibility of galactan-III in surface staining of ST258 irrespective of the distinct capsular antigens expressed by both clades described previously. Based on these data, the galactan-III antigen may represent an attractive target for active and passive immunization approaches against K. pneumoniae ST258.


Assuntos
Galactanos/metabolismo , Klebsiella pneumoniae/imunologia , Antígenos O/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Clonagem Molecular , Epitopos/imunologia , Feminino , Galactanos/classificação , Galactanos/genética , Galactanos/imunologia , Hibridomas , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Lipopolissacarídeos/imunologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/análise , Antígenos O/genética , Óperon/genética , Virulência
12.
J Biol Chem ; 289(5): 2745-54, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24324266

RESUMO

Enterobacterial common antigen (ECA) is expressed by Gram-negative bacteria belonging to Enterobacteriaceae, including emerging drug-resistant pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus spp. Recent studies have indicated the importance of ECA for cell envelope integrity, flagellum expression, and resistance of enteric bacteria to acetic acid and bile salts. ECA, a heteropolysaccharide built from the trisaccharide repeating unit, →3)-α-D-Fucp4NAc-(1→4)-ß-D-ManpNAcA-(1→4)-α-D-GlcpNAc-(1→, occurs as a cyclic form (ECA(CYC)), a phosphatidylglycerol (PG)-linked form (ECA(PG)), and an endotoxin/lipopolysaccharide (LPS)-associated form (ECA(LPS)). Since the discovery of ECA in 1962, the structures of ECA(PG) and ECA(CYC) have been completely elucidated. However, no direct evidence has been presented to support a covalent linkage between ECA and LPS; only serological indications of co-association have been reported. This is paradoxical, given that ECA was first identified based on the capacity of immunogenic ECA(LPS) to elicit antibodies cross-reactive with enterobacteria. Using a simple isolation protocol supported by serological tracking of ECA epitopes and NMR spectroscopy and mass spectrometry, we have succeeded in the first detection, isolation, and complete structural analysis of poly- and oligosaccharides of Shigella sonnei phase II ECA(LPS). ECA(LPS) consists of the core oligosaccharide substituted with one to four repeating units of ECA at the position occupied by the O-antigen in the case of smooth S. sonnei phase I. These data represent the first structural evidence for the existence of ECA(LPS) in the half-century since it was first discovered and provide insights that could prove helpful in further structural analyses and screening of ECA(LPS) among Enterobacteriaceae species.


Assuntos
Antígenos de Bactérias/metabolismo , Disenteria Bacilar/microbiologia , Lipopolissacarídeos/metabolismo , Polissacarídeos/metabolismo , Shigella sonnei/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/isolamento & purificação , Sequência de Carboidratos , Cromatografia , Disenteria Bacilar/imunologia , Humanos , Lipopolissacarídeos/imunologia , Espectrometria de Massas , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/imunologia , Shigella sonnei/imunologia
13.
Glycobiology ; 25(5): 570-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25552259

RESUMO

Glycophorins C and D are highly glycosylated integral sialoglycoproteins of human red blood cell membranes carrying the Gerbich blood group antigens. The O- and N-glycosidic chains of the major erythrocyte glycoprotein (Lisowska E. 2001, Antigenic properties of human glycophorins - an update. Adv Exp Med Biol, 491:155-169; Tomita M and Marchesi VT. 1975, Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc Natl Acad Sci USA, 72:2964-2968.) are well characterized but the structure of GPC N-glycans has remained unknown. This problem became important since it was reported that GPC N-glycans play an essential role in the interaction with Plasmodium falciparum EBA-140 merozoite ligand. The elucidation of these structures seems essential for full characterization of the GPC binding site for the EBA-140 ligand. We have employed detailed structural analysis using sequential mass spectrometry to show that many GPC N-glycans contain H2 antigen structures and several contain polylactosamine structures capped with fucose. The results obtained indicate structural heterogeneity of the GPC N-glycans and show the existence of structural elements not found in glycophorin A N-glycans. Our results also open a possibility of new interpretation of the data concerning the binding of P. falciparum EBA-140 ligand to GPC. We hypothesize that preferable terminal fucosylation of N-glycosidic chains containing repeating lactosamine units of the GPC Gerbich variant could be an explanation for why the EBA-140 ligand does not react with GPC Gerbich and an indication that the EBA-140 interaction with GPC is distinctly dependent on the GPC N-glycan structure.


Assuntos
Proteínas de Transporte/metabolismo , Glicoforinas/química , Polissacarídeos/química , Proteínas de Protozoários/metabolismo , Glicoforinas/metabolismo , Humanos , Proteínas de Membrana , Polissacarídeos/metabolismo , Ligação Proteica
14.
Postepy Hig Med Dosw (Online) ; 69: 1003-12, 2015 Sep 08.
Artigo em Polonês | MEDLINE | ID: mdl-26400887

RESUMO

The enterobacterial common antigen (ECA) is a carbohydrate-derived cell surface antigen present in all Gram-negative bacteria belonging to Enterobacteriaceae family. Biosynthetic pathways shared by ECA and LPS (endotoxin) suggest close connections between these antigens. ECA occurs in three different forms: a phosphatidyl-linked linear polysaccharide anchored on the cell surface (ECAPG), a cyclic form built of 4-6 repeating units localized in the periplasm (ECACYC) and as a linear polysaccharide covalently linked to LPS core oligosaccharide (ECALPS). Regardless of ECA form, poly- and oligosaccharides of ECA consist of the biological trisaccharide repeating units: →3)-α-d-Fucp4NAc-(1→4)-ß-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, where Fucp4NAc refers to 4-acetamido-2,4-dideoxygalactose, ManpNAcA to N-acetyl-mannosaminuronic acid and GlcpNAc to N-acetylglucosamine. ECAPG and ECALPS consisting of one unit with Fucp4NAc as a terminal sugar were also identified. The number of the studies shows its occurrence in all members of enteric bacteria with a few exceptions such as Erwinia chrysanthemi. The presence of ECA was also shown for such genera as Plesiomonas [4] and Yersinia [36], previously belonging to the Vibrionaceae and Pasteurellaceae families, respectively. It was one of the reasons to include these two taxa in the Enterobacteriaceae family. The function of ECA is not fully understood, but it was reported that its occurrence is important in resistance of bacterial cells to environmental conditions, such as bile salts in the human digestive tract. The immunogenicity of ECA seems very interesting in the fact that only sparse rough Gram-negative strains, such as Shigella sonnei phase II, Escherichia coli R1, R2, R4, K-12, and Yersinia enterocolitica O:3 are able to induce the production of specific anti-ECA antibodies. It is the effect of the ECALPS, and the evidence for the existence of such covalent linkage was provided by structural analysis of S. sonnei surface antigens.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Enterobacteriaceae/química , Enterobacteriaceae/imunologia , Sequência de Carboidratos , Humanos , Estrutura Molecular
16.
Carbohydr Polym ; 326: 121581, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142087

RESUMO

Klebsiella pneumoniae is one of the priority objects for the development of new therapies against infections. The species has been perceived as of limited variety of O antigens (11 O serotypes identified to date). That trait makes lipopolysaccharide an attractive target for protective antibodies. Nowadays, K. pneumoniae O antigens encoding genes are often analysed by bioinformatic tools, such as Kaptive, indicating higher actual diversity of the O antigen loci. One of the novel K. pneumoniae O loci for which the antigen structure has not been elucidated so far is OL101. In this study, four clinical isolates predicted as OL101 were characterized and found to have the O antigen structure composed of ß-Kdop-[→3)-α-l-Rhap-(1→4)-α-d-Glcp-(1→]n, representing a novel serotype O13. Identification of the ß-Kdop terminus was based on the analysis of the complete LPS molecule by the HR-MAS NMR spectroscopy. The bioinformatic analysis of 71,377 K. pneumoniae genomes from public databases (July 2023) revealed a notable OL101 prevalence of 6.55 %.


Assuntos
Infecções por Klebsiella , Antígenos O , Humanos , Antígenos O/genética , Antígenos O/química , Klebsiella pneumoniae/genética , Sorogrupo , Lipopolissacarídeos/química
17.
J Biol Chem ; 287(45): 38220-30, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22965229

RESUMO

Rare polyagglutinable NOR erythrocytes contain three unique globoside (Gb4Cer) derivatives, NOR1, NOR(int), and NOR2, in which Gal(α1-4), GalNAc(ß1-3)Gal(α1-4), and Gal(α1-4)GalNAc(ß1-3)Gal(α1-4), respectively, are linked to the terminal GalNAc residue of Gb4Cer. NOR1 and NOR2, which both terminate with a Gal(α1-4)GalNAc- sequence, react with anti-NOR antibodies commonly present in human sera. While searching for an enzyme responsible for the biosynthesis of Gal(α1-4)GalNAc, we identified a mutation in the A4GALT gene encoding Gb3/CD77 synthase (α1,4-galactosyltransferase). Fourteen NOR-positive donors were heterozygous for the C>G mutation at position 631 of the open reading frame of the A4GALT gene, whereas 495 NOR-negative donors were homozygous for C at this position. The enzyme encoded by the mutated gene contains glutamic acid instead of glutamine at position 211 (substitution Q211E). To determine whether this mutation could change the enzyme specificity, we transfected a teratocarcinoma cell line (2102Ep) with vectors encoding the consensus Gb3/CD77 synthase and Gb3/CD77 synthase with Glu at position 211. The cellular glycolipids produced by these cells were analyzed by flow cytometry, high-performance thin-layer chromatography, enzymatic degradation, and MALDI-TOF mass spectrometry. Cells transfected with either vector expressed the P1 blood group antigen, which was absent from untransfected cells. Cells transfected with the vector encoding the Gb3/CD77 synthase with Glu at position 211 expressed both P1 and NOR antigens. Collectively, these results suggest that the C631G mutation alters the acceptor specificity of Gb3/CD77 synthase, rendering it able to catalyze synthesis of the Gal(α1-4)Gal and Gal(α1-4)GalNAc moieties.


Assuntos
Substituição de Aminoácidos , Galactosiltransferases/genética , Hemaglutinação/genética , Mutação Puntual , Sequência de Carboidratos , Linhagem Celular Tumoral , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Citometria de Fluxo , Galactosiltransferases/metabolismo , Predisposição Genética para Doença , Genótipo , Globosídeos/biossíntese , Globosídeos/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Síndrome
18.
Cancer Immunol Immunother ; 62(8): 1411-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23744477

RESUMO

Ficolins are serum pattern recognition molecules. They have opsonic properties and are able to activate complement via the lectin pathway. This paper reports investigations concerning ficolin-2 and ficolin-3 in ovarian cancer (OC). Their serum levels, single nucleotide polymorphisms of the corresponding FCN2 and FCN3 genes and specific mRNA expression in ovarian sections were investigated in 128 patients suffering from primary OC and 197 controls operated on for reasons other than malignancies. The latter consisted of two reference groups: those with benign tumours (n = 123) and those with normal ovaries (NO) (n = 74). Serum ficolin-2 and ficolin-3 concentrations were higher among patients with malignant disease when compared with either of the reference groups. A significant correlation between ficolin-2 and ficolin-3 concentrations was found, while no correlations with CA125 antigen or CRP were observed. No differences in the frequency of single nucleotide polymorphisms at sites -64, -4 (promoter), +6359, or +6424 (exon 8) (FCN2 gene) nor in the frame-shift mutation 1637delC (FCN3 gene) were found between investigated groups. In contrast to serum concentrations, the expression of FCN2 gene (reported for the first time in ovarian sections) was significantly lower in women with OC in comparison with patients with NO but not with benign ovarian tumours. In case of FCN3 gene, its expression levels in OC group inversely correlated with serum ficolin-3 and were lower in comparison with controls.


Assuntos
Glicoproteínas/sangue , Glicoproteínas/genética , Lectinas/sangue , Lectinas/genética , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Genótipo , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem , Ficolinas
19.
Mar Drugs ; 11(2): 440-54, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389090

RESUMO

The herein presented complete structure of the core oligosaccharide of lipopolysaccharide (LPS) P. shigelloides Polish Collection of Microorganisms (PCM) 2231 (serotype O17) was investigated by (1)H, (13)C NMR spectroscopy, mass spectrometry, chemical analyses and serological methods. The core oligosaccharide is composed of an undecasaccharide, which represents the second core type identified for P. shigelloides serotype O17 LPS. This structure is similar to that of the core oligosaccharide of P. shigelloides strains 302-73 (serotype O1) and 7-63 (serotype O17) and differs from these only by one sugar residue. Serological screening of 55 strains of P. shigelloides with the use of serum against identified core oligosaccharide conjugated with bovine serum albumin (BSA) indicated the presence of similar structures in the LPS core region of 28 O-serotypes. This observation suggests that the core oligosaccharide structure present in strain PCM 2231 could be the most common type among P. shigelloides lipopolysaccharides.


Assuntos
Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Plesiomonas/classificação , Plesiomonas/metabolismo , Animais , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Coelhos
20.
Glycobiology ; 22(2): 267-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21890891

RESUMO

Ficolin-1 (M), ficolin-2 (L), ficolin-3 (H) and mannan-binding lectin (MBL) activate the complement system and have opsonic activity. The specificity of ficolin-3 is poorly characterized and currently limited to a few ligands only. We present new specific targets for human ficolin-3, identified among lipopolysaccharides (LPSs, endotoxin) of Hafnia alvei. The interaction was restricted to LPSs of four strains: 23, Polish Collection of Microorganisms (PCM) 1200, PCM 1203 and PCM 1205 and limited to their O-specific polysaccharides (O-specific PSs) composed of different numbers of oligosaccharide (OS) repeating units (RUs). Moreover, these LPS/ficolin-3 complexes activated the lectin pathway of complement in a C4b-deposition assay in a calcium- and magnesium-dependent way. A neoglycoconjugate of the O-specific PS fraction of H. alvei 1200 LPS with bovine serum albumin (BSA) was prepared and used as a tool for the determination of ficolin-3 concentration and activity in serum. To confirm a structure of the O-specific PS 1200 selected for the conjugate preparation, structural analysis was performed on a series of O-specific PSs released by the mild acid hydrolysis of the LPS. The isolated O-specific PSs, showing the different length distributions, were devoid of a major part of the core OS region and had Hep-Kdo disaccharide at a reducing end. The neoglycoconjugate was a highly selective tool for the determination of ficolin-3 concentration and activity in serum (lectin pathway activation in the C4b deposition assay) and was not affected by MBL, ficolin-1 and ficolin-2 or natural antibodies.


Assuntos
Endotoxinas/química , Hafnia alvei , Lectinas/química , Antígenos O/química , Animais , Bovinos , Lectina de Ligação a Manose da Via do Complemento/fisiologia , Humanos , Lectinas/metabolismo , Ligantes , Lipopolissacarídeos/química , Soroalbumina Bovina/química , Ficolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA