Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2300052120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252957

RESUMO

Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/patologia , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Ataxia/genética , Ataxia/patologia , Encéfalo/metabolismo , Astrócitos/metabolismo
2.
Glia ; 66(9): 1972-1987, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30043530

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by balance and coordination deficits due to the predominant loss of Purkinje neurons in the cerebellum. We previously demonstrated that cerebellar astrogliosis beings during the early stages of SCA1, prior to onset of motor deficits and loss of Purkinje neurons. We communicate here that cerebellar astrogliosis contributes to SCA1 pathogenesis in a biphasic, stage of disease dependent manner. We modulated astrogliosis by selectively reducing pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astroglia via a Cre-lox mouse genetic approach. Our results indicate that inhibition of astroglial NF-κB signaling, prior to motor deficit onset, exacerbates disease severity. This is suggestive of a neuroprotective role mediated by astroglia during early stage SCA1. In contrast, inhibition of astroglial NF-κB signaling during late stage of disease ameliorated motor deficits, indicating a potentially harmful role of astroglia late in SCA1. These results indicate that astrogliosis may have a critical and dual role in disease. If so, our results imply that anti-inflammatory astroglia-based therapeutic approaches may need to consider disease progression to achieve therapeutic efficacy.


Assuntos
Astrócitos/fisiologia , Gliose/fisiopatologia , Ataxias Espinocerebelares/fisiopatologia , Animais , Astrócitos/patologia , Ataxina-1/genética , Ataxina-1/metabolismo , Cerebelo/patologia , Cerebelo/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Atividade Motora/fisiologia , NF-kappa B/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Neuroproteção/fisiologia , Distribuição Aleatória , Ataxias Espinocerebelares/patologia
3.
J Neuroinflammation ; 14(1): 107, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545543

RESUMO

BACKGROUND: Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. METHODS: Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. RESULTS: PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. CONCLUSIONS: A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.


Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Transtornos Motores/etiologia , Transtornos Motores/terapia , Ataxias Espinocerebelares/complicações , Aminopiridinas/uso terapêutico , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cerebelo/patologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Mutação/genética , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Equilíbrio Postural/efeitos dos fármacos , Equilíbrio Postural/genética , Pirróis/uso terapêutico , Ataxias Espinocerebelares/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
4.
PLoS One ; 13(7): e0200013, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975753

RESUMO

Spinocerebellar Ataxia type 1 (SCA1) is a fatal neurodegenerative genetic disease that is characterized by pronounced neuronal loss and gliosis in the cerebellum. We have previously demonstrated microglial activation, measured as an increase in microglial density in cerebellar cortex and an increase in the production of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), in the cerebellum of the ATXN1[82Q] transgenic mouse model of SCA1. To examine the role of activated state of microglia in SCA1, we used a Cre-Lox approach with IKKßF/F;LysM Cre mice intended to reduce inflammatory NF-κB signaling, selectively in microglia. ATXN1[82Q];IKKßF/F;LysM Cre mice showed reduced cerebellar microglial density and production of TNFα compared to ATXN1[82Q] mice, yet reducing NF-κB did not ameliorate motor impairments and cerebellar cellular pathologies. Unexpectedly, at 12 weeks of age, control IKKßF/F;LysM Cre mice showed motor deficits equal to ATXN1[82Q] mice that were dissociated from any obvious neurodegenerative changes in the cerebellum, but were rather associated with a developmental impairment that presented as a retention of climbing fiber synaptic terminals on the soma of Purkinje neurons. These results indicate that NF-κB signaling is required for increase in microglial numbers and TNF-α production in the cerebella of ATXN1[82Q] mouse model of SCA1. Furthermore, these results elucidate a novel role of canonical NF-κB signaling in pruning of surplus synapses on Purkinje neurons in the cerebellum during development.


Assuntos
Atividade Motora , NF-kappa B/metabolismo , Transdução de Sinais/genética , Animais , Contagem de Células , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/etiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA