Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 74(5): 1086-1102.e5, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31101498

RESUMO

Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.


Assuntos
Carcinogênese/genética , Melanoma/genética , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Melanoma/enzimologia , Melanoma/patologia , Mutação , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Transdução de Sinais/efeitos dos fármacos
2.
Mol Cell Proteomics ; 19(5): 744-756, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132232

RESUMO

Signaling networks process intra- and extracellular information to modulate the functions of a cell. Deregulation of signaling networks results in abnormal cellular physiological states and often drives diseases. Network responses to a stimulus or a drug treatment can be highly heterogeneous across cells in a tissue because of many sources of cellular genetic and non-genetic variance. Signaling network heterogeneity is the key to many biological processes, such as cell differentiation and drug resistance. Only recently, the emergence of multiplexed single-cell measurement technologies has made it possible to evaluate this heterogeneity. In this review, we categorize currently established single-cell signaling network profiling approaches by their methodology, coverage, and application, and we discuss the advantages and limitations of each type of technology. We also describe the available computational tools for network characterization using single-cell data and discuss potential confounding factors that need to be considered in single-cell signaling network analyses.


Assuntos
Transdução de Sinais , Análise de Célula Única , Animais , Epigênese Genética , Humanos , Imageamento Tridimensional , Proteômica , Transcriptoma/genética
3.
Mol Syst Biol ; 16(12): e9798, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33369114

RESUMO

Cells react to their microenvironment by integrating external stimuli into phenotypic decisions via an intracellular signaling network. To analyze the interplay of environment, local neighborhood, and internal cell state effects on phenotypic variability, we developed an experimental approach that enables multiplexed mass cytometric imaging analysis of up to 240 pooled spheroid microtissues. We quantified the contributions of environment, neighborhood, and intracellular state to marker variability in single cells of the spheroids. A linear model explained on average more than half of the variability of 34 markers across four cell lines and six growth conditions. The contributions of cell-intrinsic and environmental factors to marker variability are hierarchically interdependent, a finding that we propose has general implications for systems-level studies of single-cell phenotypic variability. By the overexpression of 51 signaling protein constructs in subsets of cells, we also identified proteins that have cell-intrinsic and cell-extrinsic effects. Our study deconvolves factors influencing cellular phenotype in a 3D tissue and provides a scalable experimental system, analytical principles, and rich multiplexed imaging datasets for future studies.


Assuntos
Microambiente Celular , Imageamento Tridimensional , Esferoides Celulares/citologia , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Modelos Lineares , Fenótipo
4.
Front Physiol ; 11: 579117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329028

RESUMO

Intracellular signaling pathways are at the core of cellular information processing. The states of these pathways and their inputs determine signaling dynamics and drive cell function. Within a cancerous tumor, many combinations of cell states and microenvironments can lead to dramatic variations in responses to treatment. Network rewiring has been thought to underlie these context-dependent differences in signaling; however, from a biochemical standpoint, rewiring of signaling networks should not be a prerequisite for heterogeneity in responses to stimuli. Here we address this conundrum by analyzing an in vitro model of the epithelial mesenchymal transition (EMT), a biological program implicated in increased tumor invasiveness, heterogeneity, and drug resistance. We used mass cytometry to measure EGF signaling dynamics in the ERK and AKT signaling pathways before and after induction of EMT in Py2T murine breast cancer cells. Analysis of the data with standard network inference methods suggested EMT-dependent network rewiring. In contrast, use of a modeling approach that adequately accounts for single-cell variation demonstrated that a single reaction-based pathway model with constant structure and near-constant parameters is sufficient to represent differences in EGF signaling across EMT. This result indicates that rewiring of the signaling network is not necessary for heterogeneous responses to a signal and that unifying reaction-based models should be employed for characterization of signaling in heterogeneous environments, such as cancer.

5.
Sci Rep ; 10(1): 1233, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988302

RESUMO

Inferring cell-signaling networks from high-throughput data is a challenging problem in systems biology. Recent advances in cytometric technology enable us to measure the abundance of a large number of proteins at the single-cell level across time. Traditional network reconstruction approaches usually consider each time point separately, resulting thus in inferred networks that strongly vary across time. To account for the possibly time-invariant physical couplings within the signaling network, we extend the traditional graphical lasso with an additional regularizer that penalizes network variations over time. ROC evaluation of the method on in silico data showed higher reconstruction accuracy than standard graphical lasso. We also tested our approach on single-cell mass cytometry data of IFNγ-stimulated THP1 cells with 26 phospho-proteins simultaneously measured. Our approach recapitulated known signaling relationships, such as connection within the JAK/STAT pathway, and was further validated in characterizing perturbed signaling network with PI3K, MEK1/2 and AMPK inhibitors.


Assuntos
Biologia Computacional/métodos , Análise de Célula Única/métodos , Células THP-1/metabolismo , Algoritmos , Simulação por Computador , Redes Reguladoras de Genes , Genoma , Humanos , Modelos Estatísticos , Curva ROC , Biologia de Sistemas/métodos
6.
Nat Commun ; 9(1): 632, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434325

RESUMO

Recent studies have shown that cell cycle and cell volume are confounding factors when studying biological phenomena in single cells. Here we present a combined experimental and computational method, CellCycleTRACER, to account for these factors in mass cytometry data. CellCycleTRACER is applied to mass cytometry data collected on three different cell types during a TNFα stimulation time-course. CellCycleTRACER reveals signaling relationships and cell heterogeneity that were otherwise masked.


Assuntos
Ciclo Celular , Células/citologia , Citometria de Fluxo/métodos , Análise de Célula Única/métodos , Linhagem Celular , Humanos
7.
Cell Syst ; 6(1): 25-36.e5, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29289569

RESUMO

To build comprehensive models of cellular states and interactions in normal and diseased tissue, genetic and proteomic information must be extracted with single-cell and spatial resolution. Here, we extended imaging mass cytometry to enable multiplexed detection of mRNA and proteins in tissues. Three mRNA target species were detected by RNAscope-based metal in situ hybridization with simultaneous antibody detection of 16 proteins. Analysis of 70 breast cancer samples showed that HER2 and CK19 mRNA and protein levels are moderately correlated on the single-cell level, but that only HER2, and not CK19, has strong mRNA-to-protein correlation on the cell population level. The chemoattractant CXCL10 was expressed in stromal cell clusters, and the frequency of CXCL10-expressing cells correlated with T cell presence. Our flexible and expandable method will allow an increase in the information content retrieved from patient samples for biomedical purposes, enable detailed studies of tumor biology, and serve as a tool to bridge comprehensive genomic and proteomic tissue analysis.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Citometria por Imagem/métodos , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Quimiocina CXCL10/análise , Quimiocina CXCL10/genética , Feminino , Células HeLa , Humanos , Hibridização In Situ/métodos , Queratina-19/análise , Queratina-19/genética , Proteômica/métodos , RNA Mensageiro/análise , Receptor ErbB-2/análise , Receptor ErbB-2/genética , Análise de Célula Única/métodos
8.
Nat Biotechnol ; 35(2): 164-172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28092656

RESUMO

Signaling networks are key regulators of cellular function. Although the concentrations of signaling proteins are perturbed in disease states, such as cancer, and are modulated by drug therapies, our understanding of how such changes shape the properties of signaling networks is limited. Here we couple mass-cytometry-based single-cell analysis with overexpression of tagged signaling proteins to study the dependence of signaling relationships and dynamics on protein node abundance. Focusing on the epidermal growth factor receptor (EGFR) signaling network in HEK293T cells, we analyze 20 signaling proteins during a 1-h EGF stimulation time course using a panel of 35 antibodies. Data analysis with BP-R2, a measure that quantifies complex signaling relationships, reveals abundance-dependent network states and identifies novel signaling relationships. Further, we show that upstream signaling proteins have abundance-dependent effects on downstream signaling dynamics. Our approach elucidates the influence of node abundance on signal transduction networks and will further our understanding of signaling in health and disease.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Citometria de Fluxo/métodos , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Proteoma/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA