Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339147

RESUMO

Differently from higher eukaryotic cells, in the yeast Saccharomyces cerevisiae there are two mitochondrial carrier proteins involved in the transport of citrate: Ctp1 and Yhm2. Very little is known about the physiological role of these proteins. Wild-type and mutant yeast strains deleted in CTP1 and YHM2 were grown in media supplemented with a fermentable (glucose) or a nonfermentable (ethanol) carbon source. To assess changes in Ctp1 and Yhm2 mRNA expression levels, real-time PCR was performed after total RNA extraction. In the wild-type strain, the metabolic switch from the exponential to the stationary phase is associated with an increase in the expression level of the two citrate transporters. In addition, the results obtained in the mutant strains suggest that the presence of a single citrate transporter can partially compensate for the absence of the other. Ctp1 and Yhm2 differently contribute to fermentative and respiratory metabolism. Moreover, the two mitochondrial carriers represent a link between the Krebs cycle and the glyoxylate cycle, which play a key role in the metabolic adaptation strategies of S. cerevisiae.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citratos/metabolismo , Ácido Cítrico/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373443

RESUMO

Hyaluronic acid (HA) is a glycosaminoglycan widely distributed in the human body, especially in body fluids and the extracellular matrix of tissues. It plays a crucial role not only in maintaining tissue hydration but also in cellular processes such as proliferation, differentiation, and the inflammatory response. HA has demonstrated its efficacy as a powerful bioactive molecule not only for skin antiaging but also in atherosclerosis, cancer, and other pathological conditions. Due to its biocompatibility, biodegradability, non-toxicity, and non-immunogenicity, several HA-based biomedical products have been developed. There is an increasing focus on optimizing HA production processes to achieve high-quality, efficient, and cost-effective products. This review discusses HA's structure, properties, and production through microbial fermentation. Furthermore, it highlights the bioactive applications of HA in emerging sectors of biomedicine.


Assuntos
Ácido Hialurônico , Pele , Humanos , Ácido Hialurônico/química , Fenômenos Químicos , Matriz Extracelular , Hidrogéis
3.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162943

RESUMO

Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson's disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system.


Assuntos
Ácido Aspártico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/biossíntese , Transporte Biológico Ativo , Clonagem Molecular , Citosol/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , beta-Alanina/biossíntese
4.
Exerc Sport Sci Rev ; 49(2): 99-106, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33720911

RESUMO

Several studies demonstrated that some types of physical exercise might affect male reproductive potential, even though the potential mechanisms involved in the modulation of sperm quality remain poorly understood. Therefore, we propose a new role for gamete mitochondria as a key hub that coordinates molecular events related to the effects induced by physical exercise.


Assuntos
Exercício Físico , Mitocôndrias , Células Germinativas , Humanos , Masculino
5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769062

RESUMO

Neurodegenerative diseases are a group of pathologies that cause severe disability due to motor and cognitive limitations. In particular, cognitive impairment is a growing health and socioeconomic problem which is still difficult to deal with today. As there are no pharmacologically effective treatments for cognitive deficits, scientific interest is growing regarding the possible impacts of healthy lifestyles on them. In this context, physical activity is gaining more and more evidence as a primary prevention intervention, a nonpharmacological therapy and a rehabilitation tool for improving cognitive functions in neurodegenerative diseases. In this descriptive overview we highlight the neurobiological effects of physical exercise, which is able to promote neuroplasticity and neuroprotection by acting at the cytokine and hormonal level, and the consequent positive clinical effects on patients suffering from cognitive impairment.


Assuntos
Disfunção Cognitiva/fisiopatologia , Exercício Físico/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Cognição/fisiologia , Terapia por Exercício/métodos , Humanos
6.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842667

RESUMO

Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Translocador 1 do Nucleotídeo Adenina/química , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo
7.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248186

RESUMO

Sperm motility is the most important parameter involved in the fertilization process and it is strictly required for reproductive success. Although sperm movements are essential for the physiologic fertilization process, the data, deriving from studies focused on the research of altered cell pathways involved in asthenozoospermia, offer only limited information about the molecular mechanism underlying sperm motility. The aim of this study was to identify proteins involved in human sperm motility deficiency by using label-free mass-spectrometry liquid chromatography (LC-MS/MS). For this purpose, we selected sperm samples with three different classes of progressive motility: low, medium (asthenozoospermic samples) and high (normozoospermic samples). We found that several differential expressed proteins in asthenozoospermic samples were related to energetic metabolism, suggesting an interesting link between bioenergetics pathways and the regulation of sperm motility, necessary for the flagellum movement. Therefore, our results provide strong evidence that mass spectrometry-based proteomics represents an integrated approach to detect novel biochemical markers of sperm motility and quality with diagnostic relevance for male infertility and unravel the molecular etiology of idiopathic cases.


Assuntos
Metabolismo Energético , Redes e Vias Metabólicas , Proteoma , Proteômica , Motilidade dos Espermatozoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Fosforilação Oxidativa , Proteômica/métodos , Espermatozoides/fisiologia , Transcriptoma
8.
Nanomedicine ; 14(7): 1963-1971, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902526

RESUMO

Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred microliters of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Técnicas Biossensoriais , Neoplasias da Mama/diagnóstico , Caderinas/metabolismo , Imunoensaio , Ressonância de Plasmônio de Superfície , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Limite de Detecção , Células Tumorais Cultivadas
9.
J Biol Chem ; 291(38): 19746-59, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27476175

RESUMO

Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia.


Assuntos
Anemia/metabolismo , Heme/biossíntese , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Anemia/genética , Teste de Complementação Genética , Glicina/genética , Glicina/metabolismo , Heme/genética , Humanos , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochim Biophys Acta ; 1864(11): 1473-80, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27479487

RESUMO

The oxoglutarate carrier (OGC) belongs to the mitochondrial carrier family and plays a key role in important metabolic pathways. Here, site-directed mutagenesis was used to conservatively replace lysine 122 by arginine, in order to investigate new structural rearrangements required for substrate translocation. K122R mutant was kinetically characterized, exhibiting a significant Vmax reduction with respect to the wild-type (WT) OGC, whereas Km value was unaffected, implying that this substitution does not interfere with 2-oxoglutarate binding site. Moreover, K122R mutant was more inhibited by several sulfhydryl reagents with respect to the WT OGC, suggesting that the reactivity of some cysteine residues towards these Cys-specific reagents is increased in this mutant. Different sulfhydryl reagents were employed in transport assays to test the effect of the cysteine modifications on single-cysteine OGC mutants named C184, C221, C224 (constructed in the WT background) and K122R/C184, K122R/C221, K122R/C224 (constructed in the K122R background). Cysteines 221 and 224 were more deeply influenced by some sulfhydryl reagents in the K122R background. Furthermore, the presence of 2-oxoglutarate significantly enhanced the degree of inhibition of K122R/C221, K122R/C224 and C224 activity by the sulfhydryl reagent 2-Aminoethyl methanethiosulfonate hydrobromide (MTSEA), suggesting that cysteines 221 and 224, together with K122, take part to structural rearrangements required for the transition from the c- to the m-state during substrate translocation. Our results are interpreted in the light of the homology model of BtOGC, built by using as a template the X-ray structure of the bovine ADP/ATP carrier isoform 1 (AAC1).


Assuntos
Cisteína/química , Ácidos Cetoglutáricos/química , Proteínas de Membrana Transportadoras/química , Mitocôndrias/química , Translocases Mitocondriais de ADP e ATP/química , Animais , Arginina/química , Arginina/metabolismo , Sítios de Ligação , Bovinos , Cisteína/metabolismo , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/química , Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Cinética , Lisina/química , Lisina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato
11.
BMC Neurosci ; 16: 46, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26205308

RESUMO

BACKGROUND: Lipids play different important roles in central nervous system so that dysregulation of lipid pathways has been implicated in a growing number of neurodegenerative disorders including multiple sclerosis (MS). MS is the most prevalent autoimmune disorder of the central nervous system, with neurological symptoms caused by inflammation and demyelination. In this study, a lipidomic analysis was performed for the rapid profile of CD4(+) T lymphocytes from MS patient and control samples in an untargeted approach. METHODS: A matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry based approach was used for the analysis of lipid extracts using 9-aminoacridine as matrix. Lipids were analyzed in negative mode and selected species fragmented using MALDI tandem mass spectrometry for their structural assignments. RESULTS: The analysis reveals some modifications in the phospholipid pattern of MS CD4(+) T lymphocytes with respect to healthy controls with a significant increase of cardiolipin species in MS samples. CONCLUSIONS: These results demonstrate the feasibility of a MALDI-TOF approach for the analysis of CD4(+) lipid extracts and suggest how alterations in the lipid metabolism characterized lymphocytes of MS patients.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Cardiolipinas/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fosfolipídeos/metabolismo , Adolescente , Adulto , Análise Discriminante , Ácidos Graxos/metabolismo , Estudos de Viabilidade , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Análise Multivariada , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto Jovem
12.
Biochim Biophys Acta ; 1827(10): 1245-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23850633

RESUMO

The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Evolução Molecular , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/química , Animais , Sítios de Ligação , Primers do DNA/química , Primers do DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Éxons/genética , Humanos , Concentração de Íons de Hidrogênio , Íntrons/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/isolamento & purificação , Proteínas Mitocondriais/química , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
13.
Int J Biol Macromol ; 270(Pt 1): 132364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750837

RESUMO

The mitochondrial inner membrane contains some hydrophobic proteins that mediate the exchange of metabolites between the mitochondrial matrix and the cytosol. Ctp1 and Yhm2 are two carrier proteins in the yeast Saccharomyces cerevisiae responsible for the transport of citrate, a tricarboxylate involved in several metabolic pathways. Since these proteins also contribute to respiratory metabolism, in this study we investigated for the first time whether changes in citrate transport can affect the structural organization and functional properties of respiratory complexes. Through experiments in yeast mutant cells in which the gene encoding Ctp1 or Yhm2 was deleted, we found that in the absence of either mitochondrial citrate transporter, mitochondrial respiration was impaired. Structural analysis of the respiratory complexes III and IV revealed different expression levels of the catalytic and supernumerary subunits in the Δctp1 and Δyhm2 strains. In addition, Δyhm2 mitochondria appeared to be more sensitive than Δctp1 to the oxidative damage. Our results provide the first evidence for a coordinated modulation of mitochondrial citrate transport and respiratory chain activity in S. cerevisiae metabolism.


Assuntos
Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transporte de Elétrons , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética
14.
Cells ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38727298

RESUMO

The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.


Assuntos
Clozapina , Mitocôndrias , Humanos , Clozapina/farmacologia , Clozapina/análogos & derivados , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Células HL-60 , Antipsicóticos/farmacologia , Apoptose/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Metabólica
15.
Cancers (Basel) ; 15(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36672360

RESUMO

Pancreatic cancer is among the deadliest cancers worldwide and commonly presents as pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming is a hallmark of PDAC. Glucose and glutamine metabolism are extensively rewired in order to fulfil both energetic and synthetic demands of this aggressive tumour and maintain favorable redox homeostasis. The mitochondrial pyruvate carrier (MPC), the glutamine carrier (SLC1A5_Var), the glutamate carrier (GC), the aspartate/glutamate carrier (AGC), and the uncoupling protein 2 (UCP2) have all been shown to influence PDAC cell growth and progression. The expression of MPC is downregulated in PDAC and its overexpression reduces cell growth rate, whereas the other four transporters are usually overexpressed and the loss of one or more of them renders PDAC cells unable to grow and proliferate by altering the levels of crucial metabolites such as aspartate. The aim of this review is to comprehensively evaluate the current experimental evidence about the function of these carriers in PDAC metabolic rewiring. Dissecting the precise role of these transporters in the context of the tumour microenvironment is necessary for targeted drug development.

16.
Polymers (Basel) ; 14(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35567034

RESUMO

Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.

17.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827632

RESUMO

Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and ß-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.


Assuntos
Proteínas Mitocondriais/metabolismo , Doenças Neuromusculares/metabolismo , Animais , Transporte de Elétrons/genética , Humanos , Modelos Biológicos , Mutação/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/enzimologia , Fenótipo
18.
Antioxidants (Basel) ; 10(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540578

RESUMO

Plant bioactives, such as polyphenols, can differentially affect (positively or negatively) sperm quality, depending on their concentration. These molecules have been proposed as natural scavengers of reactive oxygen species (ROS) for male infertility treatment. However, few data are available about their effects on the molecular mechanisms related to sperm quality and, in particular, to sperm mitochondrial function. We investigated the effects of quercetin, naringenin, genistein, apigenin, luteolin, and resveratrol at the concentration of 0.1-1000 nM on mitochondrial respiration efficiency. Upon chemical exposure, spermatozoa were swollen in a hypotonic solution and used for polarographic assays of mitochondrial respiration. All tested compounds, except for apigenin, caused a significant increase in the mitochondrial respiration efficiency at the concentration of 0.1 nM, and a significant decrease starting from concentrations of 10 nM. The analysis of oxygen consumption rate in the active and in the resting state of mitochondrial respiration suggested different mechanisms by which the tested compounds modulate mitochondrial function. Therefore, by virtue of their ability to stimulate the respiration active state, quercetin, genistein, and luteolin were found to improve mitochondrial function in asthenozoospermic samples. Our results are relevant to the debate on the promises and perils of natural antioxidants in nutraceutical supplementation.

19.
Materials (Basel) ; 14(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201634

RESUMO

BACKGROUND: The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. METHODS: A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and 1H- NMR spectroscopies, as well as in vitro mucoadhesive and release tests. RESULTS: Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 µg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. CONCLUSIONS: Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administration.

20.
Biochim Biophys Acta Gen Subj ; 1865(5): 129854, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497735

RESUMO

BACKGROUND: In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS: The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS: The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS: The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE: The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/química , Antiporters/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Evolução Molecular , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA