Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 60(12): 8890-8897, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110152

RESUMO

ZrTe5 has unique features of a temperature-dependent topological electronic structure and anisotropic crystal structure and has obtained intensive attention from the thermoelectric community. This work revealed that the sintered polycrystalline bulk ZrTe5 possesses both (020) and (041) preferred orientations. The transport properties of polycrystalline bulk p-type ZrTe5 exhibits an obvious anisotropic characteristic, that is, the room-temperature resistivity and thermal conductivity, possessing anisotropy ratios of 0.71 and 1.49 perpendicular and parallel to the pressing direction, respectively. The polycrystalline ZrTe5 obtained higher ZT values in the direction perpendicular to the pressing direction, as compared to that in the other direction. The highest ZT value of 0.11 is achieved at 350 K. Depending on the temperature-dependent topological electronic structure, the electronic transport of p-type ZrTe5 is dominated by high-mobility electrons from linear bands and low-mobility holes from the valence band, which, however, are merely influenced by valence band holes at around room temperature. Furthermore, external magnetic fields are detrimental to thermoelectric properties of our ZrTe5, mainly arising from the more prominent negative effects of electrons under fields. This research is instructive to understand the transport features of ZrTe5 and paves the way for further optimizing their ZTs.

2.
ACS Nano ; 17(19): 19022-19032, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37732876

RESUMO

The discovery of MnBi2Te4-based intrinsic magnetic topological insulators has fueled tremendous interest in condensed matter physics, owing to their potential as an ideal platform for exploring the quantum anomalous Hall effect and other magnetism-topology interactions. However, the fabrication of single-phase MnBi2Te4 films remains a common challenge in the research field. Herein, we present an effective and simple approach for fabricating high-quality, near-stoichiometric MnBi2Te4 films by directly matching the growth rates of intermediate Bi2Te3 and MnTe. Through systematic experimental studies and thermodynamic calculations, we demonstrate that binary phases of Bi2Te3 and MnTe are easily formed during film growth, and the reaction of Bi2Te3 + MnTe → MnBi2Te4 represents the rate-limiting step among all possible reaction paths, which could result in the presence of Bi2Te3 and MnTe impurity phases in the grown MnBi2Te4 films. Moreover, Bi2Te3 and MnTe impurities introduce negative and positive anomalous Hall (AH) components, respectively, in the AH signals of MnBi2Te4 films. Our work suggests that further manipulation of growth parameters should be the essential route for fabricating phase-pure MnBi2Te4 films.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36558281

RESUMO

Mg3Sb2-based compounds are one type of important room-temperature thermoelectric materials and the appropriate candidate of type-II nodal line semimetals. In Mg3Sb2-based films, compelling research topics such as dimensionality reduction and topological states rely on the controllable preparation of films with high crystallinity, which remains a big challenge. In this work, high quality Mg3Sb2 films are successfully grown on mismatched substrates of sapphire (000l), while the temperature-driven twin structure evolution and characteristics of the electronic structure are revealed in the as-grown Mg3Sb2 films by in situ and ex situ measurements. The transition of layer-to-island growth of Mg3Sb2 films is kinetically controlled by increasing the substrate temperature (Tsub), which is accompanied with the rational manipulation of twin structure and epitaxial strains. Twin-free structure could be acquired in the Mg3Sb2 film grown at a low Tsub of 573 K, while the formation of twin structure is significantly promoted by elevating the Tsub and annealing, in close relation to the processes of strain relaxation and enhanced mass transfer. Measurements of scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES) elucidate the intrinsic p-type conduction of Mg3Sb2 films and a bulk band gap of ~0.89 eV, and a prominent Fermi level downshift of ~0.2 eV could be achieved by controlling the film growth parameters. As elucidated in this work, the effective manipulation of the epitaxial strains, twin structure and Fermi level is instructive and beneficial for the further exploration and optimization of thermoelectric and topological properties of Mg3Sb2-based films.

4.
Science ; 373(6554): 556-561, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326238

RESUMO

Thermoelectric materials transfer heat and electrical energy, hence they are useful for power generation or cooling applications. Many of these materials have narrow bandgaps, especially for cooling applications. We developed SnSe crystals with a wide bandgap (E g ≈ 33 k B T) with attractive thermoelectric properties through Pb alloying. The momentum and energy multiband alignments promoted by Pb alloying resulted in an ultrahigh power factor of ~75 µW cm-1 K-2 at 300 K, and an average figure of merit ZT of ~1.90. We found that a 31-pair thermoelectric device can produce a power generation efficiency of ~4.4% and a cooling ΔT max of ~45.7 K. These results demonstrate that wide-bandgap compounds can be used for thermoelectric cooling applications.

5.
ACS Nano ; 15(3): 5706-5714, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33683108

RESUMO

The manipulation of individual intrinsic point defects is crucial for boosting the thermoelectric performances of n-Bi2Te3-based thermoelectric films, but was not achieved in previous studies. In this work, we realize the independent manipulation of Te vacancies VTe and antisite defects of TeBi and BiTe in molecular beam epitaxially grown n-Bi2Te3 films, which is directly monitored by a scanning tunneling microscope. By virtue of introducing dominant TeBi antisites, the n-Bi2Te3 film can achieve the state-of-the-art thermoelectric power factor of 5.05 mW m-1 K-2, significantly superior to films containing VTe and BiTe as dominant defects. Angle-resolved photoemission spectroscopy and systematic transport studies have revealed two detrimental effects regarding VTe and BiTe, which have not been discovered before: (1) The presence of BiTe antisites leads to a reduction of the carrier effective mass in the conduction band; and (2) the intrinsic transformation of VTe to BiTe during the film growth results in a built-in electric field along the film thickness direction and thus is not beneficial for the carrier mobility. This research is instructive for further engineering defects and optimizing electronic transport properties of n-Bi2Te3 and other technologically important thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA