Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(1): 545-560, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484477

RESUMO

Clinical treatment of glioblastoma (GBM) remains a major challenge because of the blood-brain barrier, chemotherapeutic resistance, and aggressive tumor metastasis. The development of advanced nanoplatforms that can efficiently deliver drugs and gene therapies across the BBB to the brain tumors is urgently needed. The protein "downregulated in renal cell carcinoma" (DRR) is one of the key drivers of GBM invasion. Here, we engineered porous silicon nanoparticles (pSiNPs) with antisense oligonucleotide (AON) for DRR gene knockdown as a targeted gene and drug delivery platform for GBM treatment. These AON-modified pSiNPs (AON@pSiNPs) were selectively internalized by GBM and human cerebral microvascular endothelial cells (hCMEC/D3) cells expressing Class A scavenger receptors (SR-A). AON was released from AON@pSiNPs, knocked down DRR and inhibited GBM cell migration. Additionally, a penetration study in a microfluidic-based BBB model and a biodistribution study in a glioma mice model showed that AON@pSiNPs could specifically cross the BBB and enter the brain. We further demonstrated that AON@pSiNPs could carry a large payload of the chemotherapy drug temozolomide (TMZ, 1.3 mg of TMZ per mg of NPs) and induce a significant cytotoxicity in GBM cells. On the basis of these results, the nanocarrier and its multifunctional strategy provide a strong potential for clinical treatment of GBM and research for targeted drug and gene delivery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Silício , Porosidade , Células Endoteliais , Distribuição Tecidual , Linhagem Celular Tumoral , Temozolomida/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética
2.
Mol Biol Rep ; 49(2): 997-1006, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34855108

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most prevalent malignancy around the world. Primary tumor cells are enabled to invade and migrate into adjacent normal tissues to form secondary tumors. Epithelial-mesenchymal transitions (EMT) plays a pivotal role in facilitating tumor progression. Abundant evidence suggested that the transforming growth factor-ß1 (TGF-ß1) triggered the process of EMT. Nonetheless, the precise molecular mechanisms underlying EMT requires further elucidation, and there still lacks effective specific therapeutic target. In our recent research, we demonstrated that the interferon (IFN)-induced transmembrane protein 2 (IFITM2) promoted the growth and metastasis of GC. However, it remains unclear whether IFITM2 involves in TGF-ß1 mediated EMT in GC. METHODS AND RESULTS: In the present research, we investigated the functional role of IFITM2 in EMT process and TGF-ß1 signaling pathway in two GC cell lines. We noticed that silencing IFITM2 can effectively inhibit TGF-ß1 signaling mediated EMT by regulating down stream small mother against decapentaplegic (SMAD) 2/3 and transcription factors.This finding was further determined in both tumor tissues from GC patients and normal tissues adjacent to cancer. Our data demonstrated the key role of IFITM2 in TGF-ß1 signaling and EMT in GC. CONCLUSION: The findings enriched our understanding of the underlying mechanism in EMT during the progression of GC. In addition, IFITM2 would be a potential target for treating GC and other malignant tumors.


Assuntos
Proteínas de Membrana/metabolismo , Proteína Smad2/metabolismo , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , China , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferons , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Fatores de Transcrição , Fator de Crescimento Transformador beta1/metabolismo
3.
Mol Carcinog ; 60(9): 620-626, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34133796

RESUMO

Genome-wide association study recently identified a novel antiviral gene INTS10 (index rs7000921) in suppression of hepatitis B virus (HBV) replication. However, data were lacking on single nucleotide polymorphisms (SNPs) of INTS10 in the context of hepatocellular carcinoma (HCC) induced by HBV infection. Herein, we conducted a case-control study, including 737 HBV-related HCC cases and 750 persistently HBV-infected controls, to investigate the effect of INTS10 SNPs and their gene-environment interactions on HBV-related HCC. In multivariate analysis, the CT genotype of rs7000921 conferred a decreased risk of HBV-related HCC compared to the TT genotype (adjusted odds ratio [OR] = 0.79, 95% confidence interval [CI] = 0.64-0.98, p for permutation test = .038). Among the 12 tagSNPs, the rs4268139 yielded a borderline significant association with disease risk under the additive model (adjusted OR = 0.80, 95% CI = 0.63-1.00, p for permutation test = .061). Random forest model further suggested the rs7000921 and rs7822495 as the two-top ranked important SNPs, and thus a weighted genetic risk score (wGRS) was generated from these two SNPs plus rs4268139. The highest tertile of wGRS was associated with an increased risk, with an adjusted OR of 1.36 (95% CI = 1.05-1.75, p for permutation test = .016) compared to the lowest wGRS. Furthermore, an additive interaction was seen between wGRS and drinking (attributable proportion due to interaction [AP] = 0.21, 95% CI = 0.02-0.43, p = .016). The additive interaction between wGRS and smoking approached near significance (AP = 0.15, 95% CI = 0.00-0.32, p = .045). INTS10 polymorphisms may contribute to the progression from HBV infection to HCC. More importantly, INTS10 polymorphisms interact with drinking and smoking to affect the progression.


Assuntos
Carcinoma Hepatocelular/etiologia , Proteínas de Transporte/genética , Interação Gene-Ambiente , Hepatite B/complicações , Neoplasias Hepáticas/etiologia , Alelos , Estudos de Casos e Controles , Suscetibilidade a Doenças , Predisposição Genética para Doença , Genótipo , Hepatite B/virologia , Vírus da Hepatite B , Humanos , Mutação , Polimorfismo de Nucleotídeo Único
4.
Mol Pharm ; 18(2): 610-626, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584043

RESUMO

Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.


Assuntos
Portadores de Fármacos/química , Doença de Huntington/tratamento farmacológico , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/antagonistas & inibidores , Ataxias Espinocerebelares/tratamento farmacológico , Administração Intranasal , Administração Oral , Animais , Animais Geneticamente Modificados , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Loci Gênicos/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Injeções Intraperitoneais , Injeções Intravenosas , Injeções Intraventriculares , Injeções Espinhais , Fármacos Neuroprotetores/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Peptídeos/genética , Peptídeos/metabolismo , Permeabilidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Distribuição Tecidual , Expansão das Repetições de Trinucleotídeos
5.
J Nanobiotechnology ; 19(1): 60, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637089

RESUMO

BACKGROUND: Approximately 80% of brain tumours are gliomas. Despite treatment, patient mortality remains high due to local metastasis and relapse. It has been shown that transferrin-functionalised porous silicon nanoparticles (Tf@pSiNPs) can inhibit the migration of U87 glioma cells. However, the underlying mechanisms and the effect of glioma cell heterogeneity, which is a hallmark of the disease, on the efficacy of Tf@pSiNPs remains to be addressed. RESULTS: Here, we observed that Tf@pSiNPs inhibited heterogeneous patient-derived glioma cells' (WK1) migration across small perforations (3 µm) by approximately 30%. A phenotypical characterisation of the migrated subpopulations revealed that the majority of them were nestin and fibroblast growth factor receptor 1 positive, an indication of their cancer stem cell origin. The treatment did not inhibit cell migration across large perforations (8 µm), nor cytoskeleton formation. This is in agreement with our previous observations that cellular-volume regulation is a mediator of Tf@pSiNPs' cell migration inhibition. Since aquaporin 9 (AQP9) is closely linked to cellular-volume regulation, and is highly expressed in glioma, the effect of AQP9 expression on WK1 migration was investigated. We showed that WK1 migration is correlated to the differential expression patterns of AQP9. However, AQP9-silencing did not affect WK1 cell migration across perforations, nor the efficacy of cell migration inhibition mediated by Tf@pSiNPs, suggesting that AQP9 is not a mediator of the inhibition. CONCLUSION: This in vitro investigation highlights the unique therapeutic potentials of Tf@pSiNPs against glioma cell migration and indicates further optimisations that are required to maximise its therapeutic efficacies.


Assuntos
Glioma/tratamento farmacológico , Nanopartículas/uso terapêutico , Porosidade , Silício/farmacologia , Aquaporinas/genética , Neoplasias Encefálicas , Linhagem Celular Tumoral , Movimento Celular , Glioblastoma/tratamento farmacológico , Humanos , Células-Tronco Neoplásicas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos
6.
Radiol Med ; 126(5): 729-736, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33398549

RESUMO

The aim is to report the preliminary outcomes of percutaneous endovenous intervention (PEVI) for acute proximal deep vein thrombosis (DVT) secondary to iliac vein compression syndrome (IVCS) without inferior vena cava filter (IVCF) placement. Acute DVT patients who underwent PEVI without IVCF were analyzed retrospectively. PEVI consisted of catheter-directed thrombolysis, manual aspiration thrombectomy, balloon angioplasty and stenting. CT was used to evaluate the left common iliac vein (LCIV). Sixty-two consecutive patients (17 men and 45 women, mean age, 59.4 ± 15.2 years) were enrolled. The compression percentage of the LCIV ranged from 51.7% to 95.2% (median 83.2%). Iliac DVT was present in 7 patients; iliofemoral, in 30 patients; and iliofemoropopliteal, in 25 patients. Complete technical success and clinical improvement were obtained in all subjects without the occurrence of symptomatic pulmonary embolism (PE). Five patients experienced recurrent thrombosis. The primary patency rates at 12 and 24 months were 93.8% and 91.4%, respectively, which remained stable at 36, 48 and 60 months. The secondary patency rates at 12 and 24 months were 95.7% and 93.3%, respectively, and there was no change at 60 months. Although limited, our preliminary results suggested that PEVI without IVCF placement seemed to be safe and effective for acute proximal DVT secondary to IVCS without inferior vena cava thrombosis or symptomatic PE.


Assuntos
Procedimentos Endovasculares/métodos , Síndrome de May-Thurner/complicações , Síndrome de May-Thurner/cirurgia , Trombose Venosa/etiologia , Trombose Venosa/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Síndrome de May-Thurner/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Trombectomia , Terapia Trombolítica , Tomografia Computadorizada por Raios X , Trombose Venosa/diagnóstico por imagem
7.
Cell Physiol Biochem ; 46(4): 1365-1380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689552

RESUMO

BACKGROUND/AIMS: RBFOX3, an RNA-binding fox protein, plays an important role in the differentiation of neuronal development, but its role in the chemosensitivity of hepatocellular carcinoma (HCC) to 5-FU is unknown. METHODS: In this study, we examined the biological functions of RBFOX3 and its effect on the chemosensitivity of HCC cells to 5-FU in vitro and in a mouse xenograft model. RESULTS: RBFOX3 was found to have elevated expression in HCC cell lines and tissue samples, and its knockdown inhibited HCC cell proliferation. Moreover, knockdown of RBFOX3 improved the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and enhanced the apoptosis induced by 5-FU. However, overexpression of RBFOX3 reduced the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and decreased the apoptosis induced by 5-FU. We further elucidated that RBFOX3 knockdown synergized with 5-FU to inhibit the growth and invasion of HCC cells through PI3K/AKT and epithelial-mesenchymal transition (EMT) signaling, and promote apoptosis by activating the cytochrome-c/caspase signaling pathway. Finally, we validated that RBFOX3 regulated 5-FU-mediated cytotoxicity in HCC in mouse xenograft models. CONCLUSIONS: The findings from this study indicate that RBFOX3 regulates the chemosensitivity of HCC to 5-FU in vitro and in vivo. Therefore, targeting RBFOX3 may improve the inhibition of HCC growth and progression by 5-FU, and provide a novel potential therapeutic strategy for HCC.


Assuntos
Antígenos Nucleares/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoruracila/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos Nucleares/genética , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Fluoruracila/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Metástase Neoplásica , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transplante Heterólogo
8.
Cell Physiol Biochem ; 47(5): 1925-1935, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29972820

RESUMO

BACKGROUND/AIMS: Activator protein-2 (AP-2) transcription factors have been proved to be essential in maintaining cellular homeostasis and regulating the transformation from normal growth to neoplasia. However, the role of AP-2ß, a key member of AP-2 family, in breast cancer is rarely reported. METHODS: The effect of AP-2 on cell growth, migration and invasion in breast cancer cells were measured by MTT, colony formation, wound-healing and transwell assays, respectively. The expression levels of AP-2ß and other specific markers in breast cancer cell lines and tissue microarrays from the patients were detected using RT-PCR, Western blot and immunohistochemical staining. The regulation of AP-2ß on tumor growth in vivo was analyzed in a mouse xenograft model. RESULTS: We demonstrated the tumor-promoting function of AP-2ß in breast cancer. AP-2ß was found to be highly expressed in breast cancer cell lines and tumor tissues of breast cancer patients. The shRNA-mediated silencing of AP-2ß led to the dramatic inhibition of cell proliferation, colony formation ability, migration and invasiveness in breast cancer cells accompanied by the down-regulated expression of some key proteins involved in cancer progression, including p75, MMP-2, MMP-9, C-Jun, p-ERK and STAT3. Overexpression of AP-2ß markedly up-regulated the levels of these proteins. Consistent with the in vitro study, the silencing or overexpression of AP-2ß blocked or promoted tumor growth in the mice with xenografts of breast cancers. Notably, the high AP-2ß expression levels was correlated with poor prognosis and advanced malignancy in patients with breast cancer. CONCLUSIONS: Our study demonstrates that AP-2ß promotes tumor growth and predicts poor prognosis, and may represent a potential therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas de Neoplasias/metabolismo , Fator de Transcrição AP-2/metabolismo , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Feminino , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Prognóstico
9.
Mol Cancer ; 16(1): 158, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025423

RESUMO

BACKGROUND: N-myc (and STAT) interactor (NMI) plays vital roles in tumor growth, progression, and metastasis. In this study, we identified NMI as a potential tumor suppressor in lung cancer and explored its molecular mechanism involved in lung cancer progression. METHODS: Human lung cancer cell lines and a mouse xenograft model was used to study the effect of NMI on tumor growth. The expression of NMI, COX-2 and relevant signaling proteins were examined by Western blot. Tissue microarray immunohistochemical analysis was performed to assess the correlation between NMI and COX-2 expression in lung cancer patients. RESULTS: NMI was highly expressed in normal lung cells and tissues, but lowly expressed in lung cancer cells and tissues. Overexpression of NMI induced apoptosis, suppressed lung cancer cell growth and migration, which were mediated by up-regulation of the cleaved caspase-3/9 and down-regulation of phosphorylated PI3K/AKT, MMP2/MMP9, ß-cadherin, and COX-2/PGE2. In contrast, knockdown of NMI promoted lung cancer cell colony formation and migration, which were correlated with the increased expression of phosphorylated PI3K/AKT, MMP2/MMP9, ß-cadherin and COX-2/PGE2. Further study showed that NMI suppressed COX-2 expression through inhibition of the p50/p65 NF-κB acetylation mediated by p300. The xenograft lung cancer mouse models also confirmed the NMI-mediated suppression of tumor growth by inhibiting COX-2 signaling. Moreover, tissue microarray immunohistochemical analysis of lung adenocarcinomas also demonstrated a negative correlation between NMI and COX-2 expression. Kaplan-Meier analysis indicated that the patients with high level of NMI had a significantly better prognosis. CONCLUSIONS: Our study showed that NMI suppressed tumor growth by inhibiting PI3K/AKT, MMP2/MMP9, COX-2/PGE2 signaling pathways and p300-mediated NF-κB acetylation, and predicted a favorable prognosis in human lung adenocarcinomas, suggesting that NMI was a potential tumor suppressor in lung cancer.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Adulto , Idoso , Animais , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Modelos Animais de Doenças , Regulação para Baixo , Proteína p300 Associada a E1A/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Biol Chem ; 290(5): 3057-68, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25492865

RESUMO

Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) (henceforth referred to as Ref-1) is a multifunctional protein that in addition to its base excision DNA repair activity exerts redox control of multiple transcription factors, including nuclear factor κ-light chain enhancer of activated B cells (NF-κB), STAT3, activator protein-1 (AP-1), hypoxia-inducible factor-1 (HIF-1), and tumor protein 53 (p53). In recent years, Ref-1 has emerged as a promising therapeutic target in cancer, particularly in pancreatic ductal carcinoma. Although a significant amount of research has centered on Ref-1, no wide-ranging approach had been performed on the effects of Ref-1 inhibition and transcription factor activity perturbation. Starting with a broader approach, we identified a previously unsuspected effect on the nuclear factor erythroid-related factor 2 (NRF2), a critical regulator of cellular defenses against oxidative stress. Based on genetic and small molecule inhibitor-based methodologies, we demonstrated that repression of Ref-1 potently activates NRF2 and its downstream targets in a dose-dependent fashion, and that the redox, rather than the DNA repair function of Ref-1 is critical for this effect. Intriguingly, our results also indicate that this pathway does not involve reactive oxygen species. The link between Ref-1 and NRF2 appears to be present in all cells tested in vitro, noncancerous and cancerous, including patient-derived tumor samples. In particular, we focused on understanding the implications of the novel interaction between these two pathways in primary pancreatic ductal adenocarcinoma tumor cells and provide the first evidence that this mechanism has implications for overcoming the resistance against experimental drugs targeting Ref-1 activity, with clear translational implications.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Neoplasias Pancreáticas/genética , Espécies Reativas de Oxigênio/metabolismo
11.
Biochemistry ; 52(17): 2955-66, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23597102

RESUMO

The essential base excision repair protein, apurinic/apyrimidinic endonuclease 1 (APE1), plays an important role in redox regulation in cells and is currently targeted for the development of cancer therapeutics. One compound that binds APE1 directly is (E)-3-[2-(5,6-dimethoxy-3-methyl-1,4-benzoquinonyl)]-2-nonylpropenoic acid (E3330). Here, we revisit the mechanism by which this negatively charged compound interacts with APE1 and inhibits its redox activity. At high concentrations (millimolar), E3330 interacts with two regions in the endonuclease active site of APE1, as mapped by hydrogen-deuterium exchange mass spectrometry. However, this interaction lowers the melting temperature of APE1, which is consistent with a loss of structure in APE1, as measured by both differential scanning fluorimetry and circular dichroism. These results are consistent with other findings that E3330 concentrations of >100 µM are required to inhibit APE1's endonuclease activity. To determine the role of E3330's negatively charged carboxylate in redox inhibition, we converted the carboxylate to an amide by synthesizing (E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)methylene]-N-methoxy-undecanamide (E3330-amide), a novel uncharged derivative. E3330-amide has no effect on the melting temperature of APE1, suggesting that it does not interact with the fully folded protein. However, E3330-amide inhibits APE1's redox activity in in vitro electrophoretic mobility shift redox and cell-based transactivation assays, producing IC(50) values (8.5 and 7 µM) lower than those produced with E3330 (20 and 55 µM, respectively). Thus, E3330's negatively charged carboxylate is not required for redox inhibition. Collectively, our results provide additional support for a mechanism of redox inhibition involving interaction of E3330 or E3330-amide with partially unfolded APE1.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fluorometria , Espectrometria de Massas , Modelos Moleculares , Oxirredução , Ativação Transcricional
12.
Biochemistry ; 51(2): 695-705, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22148505

RESUMO

Apurinic/apyrimidinic endonuclease (APE1) is an unusual nuclear redox factor in which the redox-active cysteines identified to date, C65 and C93, are surface inaccessible residues whose activities may be influenced by partial unfolding of APE1. To assess the role of the five remaining cysteines in APE1's redox activity, double-cysteine mutants were analyzed, excluding C65A, which is redox-inactive as a single mutant. C93A/C99A APE1 was found to be redox-inactive, whereas other double-cysteine mutants retained the same redox activity as that observed for C93A APE1. To determine whether these three cysteines, C65, C93, and C99, were sufficient for redox activity, all other cysteines were substituted with alanine, and this protein was shown to be fully redox-active. Mutants with impaired redox activity failed to stimulate cell proliferation, establishing an important role for APE1's redox activity in cell growth. Disulfide bond formation upon oxidation of APE1 was analyzed by proteolysis of the protein followed by mass spectrometry analysis. Within 5 min of exposure to hydrogen peroxide, a single disulfide bond formed between C65 and C138 followed by the formation of three additional disulfide bonds within 15 min; 10 total disulfide bonds formed within 1 h. A single mixed-disulfide bond involving C99 of APE1 was observed for the reaction of oxidized APE1 with thioredoxin (TRX). Disulfide-bonded APE1 or APE1-TRX species were further characterized by size exclusion chromatography and found to form large complexes. Taken together, our data suggest that APE1 is a unique redox factor with properties distinct from those of other redox factors.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Dissulfetos/química , Animais , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cisteína , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Modelos Moleculares , Mutação , Oxirredução/efeitos dos fármacos , Propionatos/farmacologia , Conformação Proteica , Tiorredoxinas/metabolismo
13.
Medicine (Baltimore) ; 101(43): e31200, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36316931

RESUMO

To investigate the role of serum spalt like transcription factor 4 (SALL4) in the hepatocellular carcinoma (HCC) patients with nonsurgical treatment. Serum samples were collected from 101 patients with HCC without surgical treatment, then the SALL4 was detected by enzyme linked immunosorbent assay. According to subsequent treatment, patients were divided into 2 groups, best supportive care (BSC) (58 cases) and nonsurgical anticancer treatment (NSAT) (48 cases). Kaplan-Meier survival analysis and Cox multivariate regression analysis were applied to evaluate the relationship between SALL4 and survival time of 2 groups. In BSC group, there was no significant difference of the survival time between 2 groups (SALL4 < 800 ng/mL or SALL4 ≥ 800 ng/mL) (P = .339). In NSAT group, the survival time of patients with low SALL4 concentration was significantly longer than patients with high SALL4 concentration (P = .005). SALL4 have no predictive effect in BSC patients with HCC. But for patients received NSAT, low SALL4 concentration in serum may indicate longer survival.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Imuno-Histoquímica , Fatores de Transcrição , Prognóstico , Biomarcadores , Biomarcadores Tumorais
14.
Phlebology ; 37(8): 602-609, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35786081

RESUMO

OBJECTIVE: Population-based epidemiological data on left common iliac vein (LCIV) compression is scarce. This study aimed to investigate the prevalence of LCIV compression in an asymptomatic population and patients with left iliofemoral deep vein thrombosis (IF-DVT). MATERIALS AND METHODS: Nonprobability sampling method was used in this multicenter cross-sectional study. The minimum diameter of LCIV and right common iliac vein minimum were measured. The percentage of LCIV compression (LCIV-CP) was calculated. Compression severity (CS) was classified as mild (CP ≤ 50%), moderate (50% < CP ≤ 70%), and severe (CP > 70%). RESULTS: In all, 896 subjects constituted the asymptomatic population and 93 patients constituted the IF-DVT population. In the asymptomatic population, LCIV-CP ranged from 1.1% to 89.9% (mean 44.0%), and people with mild, moderate, and severe CS accounted for 62.3%, 28.2%, and 9.5%, respectively. In the IF-DVT population, the mean LCIV-CP was 71.1% (range 42.2%-95.2%), and patients with severe CS accounted for 75.3%. Gender and age differences in LCIV-CP and CS distribution were observed in the asymptomatic population. Females, the young- and middle-aged group had higher LCIV-CPs. In the population with moderate-severe CS, the middle-aged group accounted for a larger proportion. Middle-aged females comprised the highest percentage of patients with moderate or severe CS. Sex and age affected the LCIV-CP and CS distribution. No gender and age differences were observed in the IF-DVT population. CONCLUSIONS: LCIV compression is common in population. Middle-aged females are the predominant population with moderate-severe compression. Overlapping of LCIV-CP in the asymptomatic and IF-DVT population is significant and other risk factors should be integrated into the consideration when assessing the risk of IF-DVT secondary to LCIV compression.


Assuntos
Doenças Vasculares , Trombose Venosa , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Veia Ilíaca , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Doenças Vasculares/complicações , Trombose Venosa/epidemiologia , Trombose Venosa/etiologia
15.
Adv Sci (Weinh) ; 9(26): e2201740, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851766

RESUMO

Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.


Assuntos
Doenças do Sistema Nervoso Central , Nanomedicina , Barreira Hematoencefálica , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/terapia , Sistemas de Liberação de Medicamentos , Terapia Genética , Humanos
16.
Biochemistry ; 50(1): 82-92, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21117647

RESUMO

Apurinic/apyrimidinic endonuclease (APE1) is an essential base excision repair protein that also functions as a reduction and oxidation (redox) factor in mammals. Through a thiol-based mechanism, APE1 reduces a number of important transcription factors, including AP-1, p53, NF-κB, and HIF-1α. What is known about the mechanism to date is that the buried residues Cys 65 and Cys 93 are critical for APE1's redox activity. To further detail the redox mechanism, we developed a chemical footprinting-mass spectrometric assay using N-ethylmaleimide (NEM), an irreversible Cys modifier, to characterize the interaction of the redox inhibitor, E3330, with APE1. When APE1 was incubated with E3330, two NEM-modified products were observed, one with two and a second with seven added NEMs; this latter product corresponds to a fully modified APE1. In a similar control reaction without E3330, only the +2NEM product was observed in which the two solvent-accessible Cys residues, C99 and C138, were modified by NEM. Through hydrogen-deuterium amide exchange with analysis by mass spectrometry, we found that the +7NEM-modified species incorporates approximately 40 more deuterium atoms than the native protein, which exchanges nearly identically as the +2NEM product, suggesting that APE1 can be trapped in a partially unfolded state. E3330 was also found to increase the extent of disulfide bond formation involving redox critical Cys residues in APE1 as assessed by liquid chromatography and tandem mass spectrometry, suggesting a basis for its inhibitory effects on APE1's redox activity. Collectively, our results suggest that APE1 adopts a partially unfolded state, which we propose is the redox active form of the enzyme.


Assuntos
Benzoquinonas/farmacologia , Cisteína/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Etilmaleimida/metabolismo , Oxirredução/efeitos dos fármacos , Propionatos/farmacologia , Reagentes de Sulfidrila/metabolismo , Animais , Cisteína/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Humanos , Conformação Proteica/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Temperatura
17.
Curr Med Chem ; 28(3): 607-627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32039671

RESUMO

c-Jun N-Terminal Kinases (JNKs), members of the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, play a key role in the pathogenesis of many diseases including cancer, inflammation, Parkinson's disease, Alzheimer's disease, cardiovascular disease, obesity, and diabetes. Therefore, JNKs represent new and excellent target by therapeutic agents. Many JNK inhibitors based on different molecular scaffolds have been discovered in the past decade. However, only a few of them have advanced to clinical trials. The major obstacle for the development of JNK inhibitors as therapeutic agents is the JNKisoform selectivity. In this review, we describe the recent development of JNK inhibitors, including ATP competitive and ATP non-competitive (allosteric) inhibitors, bidentatebinding inhibitors and dual inhibitors, the challenges, and the future direction of JNK inhibitors as potential therapeutic agents.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
18.
Cancer Biomark ; 32(1): 3-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33896832

RESUMO

BACKGROUND: A recent genome-wide association study (GWAS) has posed STAT4 as a promising susceptibility gene for hepatocellular carcinoma (HCC). However, the most significant variant in this GWAS, rs7574865, yielded inconsistent results. OBJECTIVE: This study, in a Southern Chinese population, was aimed to clarify the roles in HCC incidence of the rs7574865 and other two potentially functional variants, rs897200 and rs1031507 in STAT4. METHODS: This study enrolled 631 new HCC cases and 631 cancer-free controls. The genetic association was estimated using the multivariate logistic regression model. The pairwise gene-environment interactions were assessed using the multiplicative term in regression model and the "Delta" method for the additive scale. RESULTS: In the multivariate analysis, the rs7574865 TT genotype conferred a decreased risk of HCC compared to the GG genotype (adjusted OR = 0.62, 95%CI = 0.38∼0.99). The significant association of rs7574865 was also observed under the additive genetic model, with an adjusted OR of 0.81 (95%CI = 0.65∼0.99). Nevertheless, other two variants alone showed no significant association, as well as the haplotypes and genetic risk scores. Further analysis indicated a potential interaction between the rs897200 and alcohol drinking (P= 0.048 and 0.072 for additive and multiplicative interactions, respectively). Drinkers with the rs897200 CT+CC genotypes presented an increased disease-risk, as compared with non-drinkers carrying the TT genotype (adjusted OR = 1.68, 95%CI = 1.11∼2.54). CONCLUSIONS: The variant in STAT4, rs7574865, serves as a potential marker for predicting incidence of HCC. The rs897200 variant possibly interplays with alcohol drinking to alter HCC risk in the Southern Chinese, but warrants further investigation.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Fator de Transcrição STAT4/genética , Carcinoma Hepatocelular/epidemiologia , China/epidemiologia , Exposição Ambiental , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Incidência , Neoplasias Hepáticas/epidemiologia , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Fator de Transcrição STAT4/metabolismo
19.
J Pharmacol Exp Ther ; 334(3): 988-98, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20504914

RESUMO

Apurinic/apyrimidinic (AP) endonuclease 1 (Ape1) is an essential DNA repair protein that plays a critical role in repair of AP sites via base excision repair. Ape1 has received attention as a druggable oncotherapeutic target, especially for treating intractable cancers such as glioblastoma. The goal of this study was to identify small-molecule inhibitors of Ape1 AP endonuclease. For this purpose, a fluorescence-based high-throughput assay was used to screen a library of 60,000 small-molecule compounds for ability to inhibit Ape1 AP endonuclease activity. Four compounds with IC(50) values less than 10 microM were identified, validated, and characterized. One of the most promising compounds, designated Ape1 repair inhibitor 03 [2,4,9-trimethylbenzo[b][1,8]-naphthyridin-5-amine; AR03), inhibited cleavage of AP sites in vivo in SF767 glioblastoma cells and in vitro in whole cell extracts and inhibited purified human Ape1 in vitro. AR03 has low affinity for double-stranded DNA and weakly inhibits the Escherichia coli endonuclease IV, requiring a 20-fold higher concentration than for inhibition of Ape1. AR03 also potentiates the cytotoxicity of methyl methanesulfonate and temozolomide in SF767 cells. AR03 is chemically distinct from the previously reported small-molecule inhibitors of Ape1. AR03 is a novel small-molecule inhibitor of Ape1, which may have potential as an oncotherapeutic drug for treating glioblastoma and other cancers.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glioblastoma/patologia , Naftiridinas/farmacologia , Algoritmos , Antineoplásicos Alquilantes/farmacologia , Sítios de Ligação/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Escherichia coli/enzimologia , Corantes Fluorescentes , Glioblastoma/tratamento farmacológico , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Oxirredução
20.
Sci Rep ; 10(1): 2320, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047170

RESUMO

Mortality of glioblastoma multiforme (GBM) has not improved over the last two decades despite medical breakthroughs in the treatment of other types of cancers. Nanoparticles hold tremendous promise to overcome the pharmacokinetic challenges and off-target adverse effects. However, an inhibitory effect of nanoparticles by themselves on metastasis has not been explored. In this study, we developed transferrin-conjugated porous silicon nanoparticles (Tf@pSiNP) and studied their effect on inhibiting GBM migration by means of a microfluidic-based migration chip. This platform, designed to mimic the tight extracellular migration tracts in brain parenchyma, allowed high-content time-resolved imaging of cell migration. Tf@pSiNP were colloidally stable, biocompatible, and their uptake into GBM cells was enhanced by receptor-mediated internalisation. The migration of Tf@pSiNP-exposed cells across the confined microchannels was suppressed, but unconfined migration was unaffected. The pSiNP-induced destabilisation of focal adhesions at the leading front may partially explain the migration inhibition. More corroborating evidence suggests that pSiNP uptake reduced the plasticity of GBM cells in reducing cell volume, an effect that proved crucial in facilitating migration across the tight confined tracts. We believe that the inhibitory effect of Tf@pSiNP on cell migration, together with the drug-delivery capability of pSiNP, could potentially offer a disruptive strategy to treat GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Espaço Extracelular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Silício/química , Transferrina/administração & dosagem , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas/química , Porosidade , Transferrina/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA