Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 47: 128149, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058344

RESUMO

Aberrant alterations of rearranged during transfection (RET) have been identified as actionable drivers of multiple cancers, including thyroid carcinoma and lung cancer. Currently, several approved multikinase inhibitors such as vandetanib and cabozantinib demonstrate clinical activity in patients with RET-rearranged or RET-mutant cancers. However, the observed response rates are only modest and the 'off-target' toxicities resulted from the inhibition of other kinases is also a concern. Herein, we designed and synthesized a series of RET inhibitors based on the structure of selective RET inhibitor BLU-667 and investigated their biological activities. We identified compound 9 as a novel potent and selective RET inhibitor with improved drug-like properties. Compound 9 exhibits a selective inhibitory profile with an inhibitory concentration 50 (IC50) of 1.29 nM for RET and 1.97 (RET V804M) or 0.99 (RET M918T) for mutant RETs. The proliferation of Ba/F3 cells transformed with NSCLC related KIF5B-RET fusion was effectively suppressed by compound 9 (IC50 = 19 nM). Additionally, compound 9 displayed less 'off-target' effects than BLU-667. In mouse xenograft models, compound 9 repressed tumor growth driven by KIF5B-RET-Ba/F3 cells in a dose-dependent manner. Based on its exceptional kinase selectivity, good potency and high exposure in tumor tissues, compound 9 represents a promising lead for the discovery of RET directed therapeutic agents and the study of RET-driven tumor biology.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA