Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(5): 1865-1875, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994062

RESUMO

IgG isotypes can differentially bind to Fcγ receptors and complement, making the selection of which isotype to pursue for development of a particular therapeutic antibody important in determining the safety and efficacy of the drug. IgG2 and IgG4 isotypes have significantly lower binding affinity to Fcγ receptors. Recent evidence suggests that the IgG2 isotype is not completely devoid of effector function, whereas the IgG4 isotype can undergo in vivo Fab arm exchange leading to bispecific antibody and off-target effects. Here an attempt was made to engineer an IgG1-based scaffold lacking effector function but with stability equivalent to that of the parent IgG1. Care was taken to ensure that both stability and lack of effector function was achieved with a minimum number of mutations. Among the Asn297 mutants that result in lack of glycosylation and thus loss of effector function, we demonstrate that the N297G variant has better stability and developability compared with the N297Q or N297A variants. To further improve the stability of N297G, we introduced a novel engineered disulfide bond at a solvent inaccessible location in the CH2 domain. The resulting scaffold has stability greater than or equivalent to that of the parental IgG1 scaffold. Extensive biophysical analyses and pharmacokinetic (PK) studies in mouse, rat, and monkey further confirmed the developability of this unique scaffold, and suggest that it could be used for all Fc containing therapeutics (e.g. antibodies, bispecific antibodies, and Fc fusions) requiring lack of effector function or elimination of binding to Fcγ receptors.


Assuntos
Substituição de Aminoácidos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Mutação de Sentido Incorreto , Animais , Humanos , Macaca fascicularis , Camundongos , Ratos
2.
Pharm Res ; 34(12): 2817-2828, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110285

RESUMO

PURPOSE: To physicochemically characterize and compare monoclonal antibody (mAb) solutions containing aggregates generated via metal catalyzed oxidation (MCO). METHODS: Two monoclonal IgG2s (mAb1 and mAb2) and one monoclonal IgG1 (rituximab) were exposed to MCO with the copper/ascorbic acid oxidative system, by using several different methods. The products obtained were characterized by complementary techniques for aggregate and particle analysis (from oligomers to micron sized species), and mass spectrometry methods to determine the residual copper content and chemical modifications of the proteins. RESULTS: The particle size distribution and the morphology of the protein aggregates generated were similar for all mAbs, independent of the MCO method used. There were differences in both residual copper content and in chemical modification of specific residues, which appear to be dependent on both the protein sequence and the protocol used. All products showed a significant increase in the levels of oxidized His, Trp, and Met residues, with differences in extent of modification and specific amino acid residues modified. CONCLUSION: The extent of total oxidation and the amino acid residues with the greatest oxidation rate depend on a combination of the MCO method used and the protein sequence.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cobre/química , Imunoglobulina G/química , Agregados Proteicos , Rituximab/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Catálise , Humanos , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Soluções
3.
Anal Chem ; 88(1): 695-702, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26629796

RESUMO

Structural characterization was performed on an antibody-drug conjugate (ADC), composed of an IgG1 monoclonal antibody (mAb), mertansine drug (DM1), and a noncleavable linker. The DM1 molecules were conjugated through nonspecific modification of the mAb at solvent-exposed lysine residues. Due to the nature of the lysine conjugation process, the ADC molecules are heterogeneous, containing a range of species that differ with respect to the number of DM1 per antibody molecule. The DM1 distribution profile of the ADC was characterized by electrospray ionization mass spectrometry (ESI-MS) and capillary isoelectric focusing (cIEF), which showed that 0-8 DM1s were conjugated to an antibody molecule. By taking advantage of the high-quality MS/MS spectra and the accurate mass detection of diagnostic DM1 fragment ions generated from the higher-energy collisional dissociation (HCD) approach, we were able to identify 76 conjugation sites in the ADC, which covered approximately 83% of all the putative conjugation sites. The diagnostic DM1 fragment ions discovered in this study can be readily used for the characterization of other ADCs with maytansinoid derivatives as payload. Differential scanning calorimetric (DSC) analysis of the ADC indicated that the conjugation of DM1 destabilized the C(H)2 domain of the molecule, which is likely due to conjugation of DM1 on lysine residues in the C(H)2 domain. As a result, methionine at position 258 of the heavy chain, which is located in the C(H)2 domain of the antibody, is more susceptible to oxidation in thermally stressed ADC samples when compared to that of the naked antibody.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/química , Maitansina/química , Cromatografia Líquida de Alta Pressão , Humanos , Modelos Moleculares , Conformação Molecular , Espectrometria de Massas em Tandem
4.
Anal Biochem ; 433(2): 137-49, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23085118

RESUMO

Stable isotope labeling combined with mass spectrometry has been widely used in a diverse set of applications in the biochemistry and biomedical fields. When stable isotope-labeled proteins are produced via metabolic labeling of cell culture, a comprehensive assessment of the labeling pattern is imperative. In this study, we present a set of mass spectrometry-based bioanalytical tools developed for quantitatively tracing the levels of the stable isotopes incorporated into the recombinant proteins (monoclonal antibodies and Fc fusion proteins expressed in different host systems) that include total mass analysis, peptide mapping analysis, and amino acid analysis. We show that these three mass spectrometry-based analytical methods have distinctive advantages and limitations and that they are mutually complementary in evaluating the quality of stable isotope-labeled proteins. In addition, we show that the analytical techniques developed here are powerful tools to provide valuable insights into studying cell metabolism and performing flux analysis during cell culture.


Assuntos
Anticorpos Monoclonais/biossíntese , Fragmentos Fc das Imunoglobulinas/biossíntese , Marcação por Isótopo/métodos , Proteínas Recombinantes de Fusão/biossíntese , Animais , Células CHO , Técnicas de Cultura de Células/métodos , Cricetinae , Cricetulus , Espectrometria de Massas/métodos
5.
J Biol Chem ; 286(28): 25118-33, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21454532

RESUMO

A host of diverse stress techniques was applied to a monoclonal antibody (IgG(2)) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134-25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG(1) and IgG(2) subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced.


Assuntos
Anticorpos Monoclonais Murinos/química , Cobre/química , Imunoglobulina G/química , Animais , Anticorpos Monoclonais Murinos/uso terapêutico , Catálise , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/uso terapêutico
6.
J Biol Chem ; 286(28): 25134-44, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21518762

RESUMO

In this study, we characterized the chemical modifications in the monoclonal antibody (IgG(2)) aggregates generated under various conditions, including mechanical, chemical, and thermal stress treatment, to provide insight into the mechanism of protein aggregation and the types of aggregate produced by the different stresses. In a separate study, additional biophysical characterization was performed to arrange these aggregates into a classification system (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118-25133). Here, we report that different aggregates possessed different types and levels of chemical modification. For chemically treated samples, metal-catalyzed oxidation using copper showed site-specific oxidation of Met(246), His(304), and His(427) in the Fc portion of the antibody, which might be attributed to a putative copper-binding site. For the hydrogen peroxide-treated sample, in contrast, four solvent-exposed Met residues in the Fc portion were completely oxidized. Met and/or Trp oxidation was observed in the mechanically stressed samples, which is in agreement with the proposed model of protein interaction at the air-liquid interface. Heat treatment resulted in significant deamidation but almost no oxidation, which is consistent with thermally induced aggregates being generated by a different pathway, primarily by perturbing conformational stability. These results demonstrate that chemical modifications are present in protein aggregates; furthermore, the type, locations, and severity of the modifications depend on the specific conditions that generated the aggregates.


Assuntos
Cobre/química , Peróxido de Hidrogênio/química , Fragmentos Fc das Imunoglobulinas/química , Animais , Temperatura Alta , Humanos , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Camundongos , Oxirredução , Conformação Proteica
7.
Anal Biochem ; 421(2): 517-25, 2012 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-22227056

RESUMO

In this report, we examine the performance of a mass spectrometry (MS)-based method for quantification of protein posttranslational modifications (PTMs) using stable isotope labeled internal standards. Uniform labeling of proteins and highly similar behavior of the labeled vs nonlabeled analyte pairs during chromatographic separation and electrospray ionization (ESI) provide the means to directly quantify a wide range of PTMs. In the companion report (Jiang et al., Anal. Biochem., 421 (2012) 506-516.), we provided principles and example applications of the method. Here we show satisfactory accuracy and precision for quantifying protein modifications by using the SILIS method when the analyses were performed on different types of mass spectrometers, such as ion-trap, time-of-flight (TOF), and quadrupole instruments. Additionally, the stable isotope labeled internal standard (SILIS) method demonstrated an extended linear range of quantification expressed in accurate quantification up to at least a 4 log concentration range on three different types of mass spectrometers. We also demonstrate that lengthy chromatographic separation is no longer required to obtain quality results, offering an opportunity to significantly shorten the method run time. The results indicate the potential of this methodology for rapid and large-scale assessment of multiple quality attributes of a therapeutic protein in a single analysis.


Assuntos
Marcação por Isótopo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Reprodutibilidade dos Testes
8.
Anal Biochem ; 421(2): 506-16, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22206934

RESUMO

With the increased attention to quality by design (QbD) for biopharmaceutical products, there is a demand for accurate and precise quantification methods to monitor critical quality attributes (CQAs). To address this need we have developed a mass spectrometry (MS) based method to quantify a wide range of posttranslational modifications (PTMs) in recombinant proteins using stable isotope-labeled internal standard (SILIS). The SILIS was produced through metabolic labeling where ¹5N was uniformly introduced at every nitrogen atom in the studied proteins. To enhance the accuracy of the method, the levels of PTMs in SILIS were quantified using orthogonal analytical techniques. Digestion of an unknown sample mixed with SILIS generates a labeled and a nonlabeled version of each peptide. The nonlabeled and labeled counterparts coelute during RP-HPLC separation but exhibit a sufficient mass difference to be distinguished by MS detection. With the application of SILIS, numerous PTMs can be quantified in a single analysis based on the measured MS signal ratios of ¹5N-labeled versus the nonlabeled pairs. Several examples using microbial and mammalian-expressed recombinant proteins demonstrated the principle and utility of this method. The results indicate that SILIS is a valuable methodology in addressing CQAs for the QbD paradigm.


Assuntos
Marcação por Isótopo/métodos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Isótopos/química , Oxirredução
9.
Biotechnol Prog ; 34(3): 738-745, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341500

RESUMO

Monoclonal antibodies (mAbs) are composed of two heavy chain (HC) and two light chain (LC) polypeptides. The proper folding and assembly of HC and LC is critical for antibody production. Current dogma indicates that the free HCs are retained in the endoplasmic reticulum (ER) unless assembled with LCs into antibodies, while the LCs on the other hand can be secreted as free monomer or dimer molecules. In this study, high levels of extracellular HC homodimers (7%-45%) were observed in the cell culture media during cell line development for mAb1. Excellent correlation (R2  > 0.9) between the level of free HC homodimers and the percentage of high molecular weight species indicates that the free HC homodimers might be causative of unwanted aggregation. Due to the different surface charge of HC homodimer and fully assembled antibodies, the unwanted extracellular HC homodimers were successfully removed by downstream processing, through a cation exchange chromatography step. Reduced capillary electrophoresis-sodium dodecyl sulfate (rCE-SDS) analysis of the cell culture media from different MTX-amplified pools indicated that insufficient expression of LC is one potential root cause for the high level of free HC homodimers. The level of free HC homodimers decreased significantly (3%-25%) after retransfecting the MTX amplified pools with additional LC gene. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:738-745, 2018.


Assuntos
Anticorpos Monoclonais/química , Cadeias Pesadas de Imunoglobulinas/química , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Células Cultivadas , Cricetulus , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia
10.
J Chromatogr A ; 954(1-2): 5-32, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-12058917

RESUMO

A monolithic stationary phase is the continuous unitary porous structure prepared by in situ polymerization or consolidation inside the column tubing and, if necessary, the surface is functionalized to convert it into a sorbent with the desired chromatographic binding properties [J. Chromatogr. A 855 (1999) 273]. Monolithic stationary phases have attracted considerable attention in liquid chromatography and capillary electrochromatography in recent years due to their simple preparation procedure, unique properties and excellent performance, especially for separation of biopolymers. This review summarizes the preparation, characterization and applications of the monolithic stationary phases. In addition, the disadvantages and limitations of the monolithic stationary phases are also briefly discussed.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Capilar Eletrocinética Micelar/métodos
11.
J Chromatogr A ; 984(2): 273-82, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12564699

RESUMO

The method for preparation of molecularly imprinted monolithic stationary phase has been improved to achieve liquid chromatographic separation of enantiomers and diastereomers. By adopting low polar porogenic solvents of toluene and dodecanol and optimal polymerization conditions, the molecularly imprinted monolithic stationary phases with good flow-through properties and high resolution were prepared. Enantiomers of amino acid derivatives and diastereomers of cinchona alkaloids were completely resolved using the monolithic stationary phases. The influence of porogenic composition, monomer-template ratio and polymerization conditions on the chromatographic performance was investigated. Some chromatographic conditions such as the composition of the mobile phase and the temperature were characterized. Scanning electron microscopy showed that the molecularly imprinted monolithic stationary phase has a large through-pore structure to allow the mobile phase to flow through the column at very low backpressure. Accelerated separations of enantiomers and diastereomers were therefore achieved at elevated flow rates. Finally, the chiral recognition performance of the prepared stationary phase in aqueous media was investigated. Hydrophobic interaction, and ionic and/or hydrogen bonding interactions were proposed to be responsible for the recognition mechanism.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Estereoisomerismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-12361747

RESUMO

Immobilized liposome chromatography (ILC) was used to screen and analyze permeable compounds in traditional Chinese medicines (TCMs), testing extracts from Radix Angelica Sinensis. More than 10 peaks were resolved based on their interactions with the ILC stationary phase, a system which mimics biomembranes; this means that more than 10 components in Radix Angelica Sinensis extract have significant retention on an ILC column. Two of them, ligustilide and ferulic acid, were identified from their MS spectrum and with standard samples. A possible molecular structure of another component retained on ILC was also preliminarily identified as 3-butylidene-4,5-dihydro-2(1,3H)-1-isobenzofuranol according to its MS spectrum, hydrophobicity and 1H NMR spectrum. Of all detected components, ligustilide had the best penetration ability through the biomembrane. The effects of pH, column temperature, and ionic strength on the chromatography of methanolic extracts of Radix Angelica Sinensis were also investigated. It was found that the separation selectivity on ILC is strongly affected by the eluent pH, but only slightly by the column temperature and ionic strength.


Assuntos
Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas/química , Angelica sinensis , Concentração de Íons de Hidrogênio , Lipossomos , Concentração Osmolar , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-12137995

RESUMO

Reactive continuous rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) were prepared within the confines of a stainless steel column. Then papain was immobilized on these monoliths either directly or linked by a spacer arm. In a further step, a protein A affinity column was used for the characterization of the digestion products of human immunoglobulin G (IgG) by papain. The results showed that papain immobilized on the monolithic rod through a spacer arm exhibits higher activity for the digestion of human IgG than that without a spacer arm. The apparent Michaelis-Menten kinetic constants of free and immobilized papain, K(m) and V(max), were determined. The digestion conditions of human IgG with free and immobilized papain were optimized. Comparison of the thermal stability of free and immobilized papain showed that the immobilized papain exhibited higher thermal stability than the free enzyme. The half-time of immobilized papain reaches about a week under optimum pH and temperature conditions.


Assuntos
Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Imunoglobulina G/metabolismo , Papaína/metabolismo , Cromatografia em Gel , Humanos , Hidrólise , Espectrofotometria Ultravioleta
14.
J Chromatogr A ; 1216(8): 1223-31, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18945436

RESUMO

The sensitivity of glycan analysis using nano-liquid chromatography interfaced with electrospray ionization mass spectrometry (ESI-MS) increases with the decrease of the mobile phase flow rate, accompanied by reduced ion suppression. In this study, we describe the preparation and performance of high efficiency 10 microm I.D. amine-bonded poly(vinylbenzyl chloride-divinylbenzene) hydrophilic interaction (HILIC) porous layer open tubular (PLOT) columns operated at 20 nL/min for the separation and analysis of glycan mixtures. HILIC-PLOT columns with a uniform porous polymer layer were reproducibly prepared ( approximately 4% RSD in retention time from column-to-column) via in situ polymerization, followed by one step modification with ethylenediamine. When coupled on-line with negative ESI-MS, low detection limits (0.3fmol) for a 3-sialyl-tetrasaccharide were achieved using a 2.5mx10 microm I.D. HILIC-PLOT column. A dextran ladder standard was used to evaluate the performance of the column, and high efficiency separation was achieved with detection of the dextrans up to G22 from approximately 50 fmol amounts injected. As an example of the high sensitivity of the column, MS(6) characterization of glycan structures was possible from the injection of 10 fmol of a neutral and sialylated glycan. As another example of high sensitivity LC-MS analysis of 3 ng of a PNGase F digest of ovalbumin allowed 28 N-linked glycans to be confidently identified from a single analysis. High quality MS/MS spectra for each ovalbumin glycan were acquired and manually interpreted for structure analysis. The HILIC-PLOT column is a very promising approach for LC-MS analysis of glycans at the ultratrace level.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Ovalbumina/química , Polissacarídeos/análise , Reprodutibilidade dos Testes
15.
Electrophoresis ; 29(8): 1604-11, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18383016

RESUMO

This study expands the capabilities for ultratrace proteomic analysis of our previous work by incorporating on-line sample desalting using a triphasic (RP/strong cation exchange (SCX)/micro-SPE) trapping column connected to a 3.2 m x 10 microm id poly(styrene-divinylbenzene) (PS-DVB) porous layer open tubular (PLOT) column. To minimize extra sample handling steps, C18 RP packing was incorporated in the capillary tubing upstream of the SCX column for the on-line desalting. For the micro-SPE column, a 50 microm id PS-DVB monolithic column was positioned downstream of the SCX column. High-performance separation was achieved on the PLOT column at a mobile phase flow rate of 20 nL/min. The sensitivity and high resolution capability of the new multidimensional platform was evaluated using an in-gel tryptic digested sample of a cervical cancer (SiHa) cell line. For the injected amount of 1200 cells ( approximately 500 ng), over 2700 peptides covering greater than 850 unique proteins were identified from the triphasic SCX/PLOT/MS analysis of a single SDS gel section (>40 kDa). The 2-D LC/MS platform demonstrated good separation performance, such that more than 85% of the identified peptides were detected from only one salt fraction. In a triplicate analysis of the above >40 kDa gel section, 4497 peptides and 1209 unique proteins were identified when applying stringent filtering criteria, with a false-positive rate of 2.4%. When all three SDS-PAGE gel sections of the lysed SiHa cells were analyzed, 5047 peptides and 1857 unique proteins (false-positive rate 1.8%), including cancer-related proteins such as MAP kinases, were identified.


Assuntos
Resinas de Troca de Cátion , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas/métodos , Proteômica , Cromatografia por Troca Iônica/instrumentação , Eletroforese em Gel de Poliacrilamida , Sensibilidade e Especificidade
16.
Anal Chem ; 79(2): 540-5, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17222018

RESUMO

Silica-based monolithic capillary columns (25 cm x 10 microm i.d.) with integrated nanoESI emitters have been developed to provide high-quality and robust microSPE-nanoLC-ESI-MS analyses. The integrated nanoESI emitter adds no dead volume to the LC separation, allowing stable electrospray operation at flow rates of approximately 10 nL/min. In an initial application with a linear ion trap MS, we identified 5510 unique peptides that covered 1443 distinct Shewanella oneidensis proteins from a 300-ng tryptic digest sample in a single 4-h LC-MS/MS analysis. The use of an integrated monolithic ESI emitter provided enhanced resistance to clogging and provided good run-to-run reproducibility.


Assuntos
Cromatografia Líquida/instrumentação , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Peptídeos/análise , Reprodutibilidade dos Testes , Shewanella/química , Shewanella/metabolismo , Dióxido de Silício/química , Tripsina/química
17.
Anal Chem ; 79(16): 6174-81, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17625912

RESUMO

Following on our recent work, on-line one-dimensional (1D) and two-dimensional (2D) porous layer open tubular/liquid chromatography-electrospray ionization-mass spectrometry (PLOT/LC-ESI-MS) platforms using 3.2 mx10 microm i.d. poly(styrene-divinylbenzene) (PS-DVB) PLOT columns have been developed to provide robust, high-performance, and ultrasensitive proteomic analysis. With the use of a PicoClear tee, the dead volume connection between a 50 microm i.d. PS-DVB monolithic micro-SPE column and the PLOT column was minimized. The micro-SPE/PLOT column assembly provided a separation performance similar to that obtained with direct injection onto the PLOT column at a mobile phase flow rate of 20 nL/min. The trace analysis potential of the platform was evaluated using an in-gel tryptic digest sample of a gel fraction (15-40 kDa) of a cervical cancer (SiHa) cell line. As an example of the sensitivity of the system, approximately 2.5 ng of protein in 2 microL of solution, an amount corresponding to 20 SiHa cells, was subjected to on-line micro-SPE-PLOT/LC-ESI-MS/MS analysis using a linear ion trap MS. A total of 237 peptides associated with 163 unique proteins were identified from a single analysis when using stringent criteria associated with a false positive rate of less than 1%. The number of identified peptides and proteins increased to 638 and 343, respectively, as the injection amount was raised to approximately 45 ng of protein, an amount corresponding to 350 SiHa cells. In comparison, only 338 peptides and 231 unique proteins were identified (false positive rate again less than 1%) from 750 ng of protein from the identical gel fraction, an amount corresponding to 6000 SiHa cells, using a typical 15 cmx75 microm i.d. packed capillary column. The greater sensitivity, higher recovery, and higher resolving power of the PLOT column resulted in the increased number of identifications from only approximately 5% of the injected sample amount. The resolving power of the micro-SPE/PLOT assembly was further extended by 2D chromatography via combination of the high-efficiency reversed-phase PLOT column with strong cation-exchange chromatography (SCX). As an example, 1071 peptides associated with 536 unique proteins were identified from 75 ng of protein from the same gel fraction, an amount corresponding to 600 cells, using five ion-exchange fractions in on-line 2D SCX-PLOT/LC-MS. The 2D system, implemented in an automated format, led to simple and robust operation for proteomic analysis. These promising results demonstrate the potential of the PLOT column for ultratrace analysis.


Assuntos
Cromatografia Líquida/instrumentação , Poliestirenos , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Linhagem Celular Tumoral , Reações Falso-Positivas , Feminino , Humanos , Proteínas/análise , Proteômica/métodos , Proteômica/normas , Sensibilidade e Especificidade , Tripsina , Neoplasias do Colo do Útero/química
18.
Anal Chem ; 79(3): 938-46, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17263319

RESUMO

In this paper, the preparation and performance of long, high-efficiency poly(styrene-divinylbenzene) (PS-DVB), 10-microm-i.d. porous layer open tubular (PLOT) capillary columns are described. PLOT capillaries ( approximately 3% RSD column-to-column retention time), with relatively high permeability, were prepared by in-situ polymerization. Relatively high loading capacities, approximately 100 fmol for angiotensin I and approximately 50 fmol for insulin, were obtained with a 4.2 m x 10-microm-i.d. PLOT column. Low detection levels (attomole to sub-attomole) were achieved when the column was coupled on-line with a linear ion trap MS (LTQ). Analysis of human epidermal growth factor receptor (EGFR), a large transmembrane tyrosine kinase receptor with heterogeneous phosphorylation and glycosylation structures, was obtained at the 25 fmol level. The PLOT column yielded a peak capacity of approximately 400 for the separation of a complex tryptic digest mixture when the sample preparation included a 50-microm-i.d. PS-DVB monolithic precolumn and ESI-MS detection. As an example of the power of the column, 3046 unique peptides covering 566 distinct Methanosarcina acetivorans proteins were identified from a 50 ng in-gel tryptic digest sample combining five cuts in a single LC/MS/MS analysis using the LTQ. The results demonstrate the potential of the PLOT column for high-resolution LC/MS at the ultratrace level.


Assuntos
Proteínas Arqueais/análise , Cromatografia Líquida/instrumentação , Receptores ErbB/análise , Proteômica/métodos , Glicosilação , Humanos , Espectrometria de Massas , Methanosarcina , Fosforilação , Poliestirenos , Porosidade , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray
19.
J Cell Sci ; 120(Pt 22): 4060-70, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17971412

RESUMO

The chromosomal passenger complex (CPC) is a crucial regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, using liquid chromatography coupled to mass spectrometry (LC-MS), we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation-specific antibody that labels the CPC. A mitotic phosphorylation motif {PX[G/T/S][L/M]S(P) P or WGLS(P) P} was identified by MS in 11 proteins, including FZR1 (Cdh1) and RIC8A-two proteins with potential links to the CPC. Phosphoprotein complexes contained the known CPC components INCENP, Aurora-B (Aurkb) and TD-60 (Rcc2, RCC1-like), as well as SMAD2, 14-3-3 proteins, PP2A and Cdk1 (Cdc2a), a probable kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins, including SMAD2, PLK3 and INCENP. Mitotic SMAD2 and PLK3 phosphorylation was confirmed using phosphorylation-specific antibodies, and, in the case of Plk3, phosphorylation correlated with its localization to the mitotic apparatus and the midbody. A mutagenesis approach was used to show that INCENP phosphorylation is required for its localization to the midbody. These results provide evidence for a shared phosphorylation event that regulates localization of crucial proteins during mitosis.


Assuntos
Motivos de Aminoácidos , Mitose , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Fosfoproteínas/química , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteômica , Reprodutibilidade dos Testes , Proteínas Supressoras de Tumor
20.
J Proteome Res ; 6(11): 4489-97, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17929957

RESUMO

To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation site and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.


Assuntos
Cromatografia Líquida/métodos , Regulação Enzimológica da Expressão Gênica , Espectrometria de Massas/métodos , Oxazóis/farmacologia , Proteômica/métodos , Sequência de Aminoácidos , Cromatografia por Troca Iônica/métodos , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Toxinas Marinhas , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos/química , Fosfopeptídeos/química , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA