Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(9): 3301-3318, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35670739

RESUMO

Strigolactones (SLs) constitute a class of plant hormones that regulate many aspects of plant development, including repressing tillering in rice (Oryza sativa). However, how SL pathways are regulated is still poorly understood. Here, we describe a rice mutant dwarf and high tillering1 (dht1), which exhibits pleiotropic phenotypes (such as dwarfism and increased tiller numbers) similar to those of mutants defective in SL signaling. We show that DHT1 encodes a monocotyledon-specific hnRNP-like protein that acts as a previously unrecognized intron splicing factor for many precursor mRNAs (pre-mRNAs), including for the SL receptor gene D14. We find that the dht1 (DHT1I232F) mutant protein is impaired in its stability and RNA binding activity, causing defective splicing of D14 pre-mRNA and reduced D14 expression, and consequently leading to the SL signaling-defective phenotypes. Overall, our findings deepen our understanding of the functional diversification of hnRNP-like proteins and establish a connection between posttranscriptional splicing and SL signaling in the regulation of plant development.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Ribonucleoproteínas Nucleares Heterogêneas , Lactonas , Mutação , Proteínas de Plantas , Precursores de RNA
2.
J Neural Transm (Vienna) ; 131(1): 13-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864052

RESUMO

We aimed to explore the role of immune and inflammatory indicators in cognitive dysfunction and disease severity in patients with Parkinson's disease (PD). A total of 123 patients with Parkinson's disease were enrolled in the PD group and 49 healthy volunteers in the control group. The patients with PD were further divided into 2 subgroups by evaluating cognitive function using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE): the normal cognitive function (PD-NCI) group and the mild cognitive impairment (PD-MCI) group. Moreover, the PD patients were also divided into 2 subgroups using the defined scale of the Hoehn and Yahr (H-Y) stage: the early-stage group and the middle- and late-stage group. Immune and inflammatory indicators, including serum Aß1-42, Tau, CD4+, CD8+, CD3+, B lymphocytes cell, NK cell, Th17 cell, Treg cell, IL-6, IL-17, and TNF-α levels, were evaluated and analyzed to explore the potential correlation with the cognitive dysfunction and disease severity of PD. Among the 123 PD patients, 60 (48.8%) were diagnosed with mild cognitive impairment. Aß1-42, CD4+, CD8+, CD3+, and Treg levels observed in the PD-NCI group were lower than the control group (P < 0.001), while higher than the PD-MCI group (P < 0.001). The levels of Tau, Th17, IL-6, IL-17, and TNF-α observed in the PD-NCI group were higher than the control group (P < 0.001), while lower than in the PD-MCI group (P < 0.01). Using the same method, the results of the early-stage group and the middle- and the late-stage group were the same as above. Logistic regression analysis and ROC curve estimation were performed and indicated that the variation of Tau, CD8+, Treg, TNF-α levels was associated with cognitive decline in PD patients, and may serve as markers of PD onset. Furthermore, the variation of Aß1-42, IL-6, and TNF-α levels was found to correlate with the disease severity of PD. The immune and inflammatory-related indicators may represent an important factor in the pathogenesis of PD, cognitive dysfunction, and disease severity. The variation of Tau protein, CD8+, Treg, and TNF-α levels are associated with the cognitive dysfunction of PD, which may be considered as onset markers. Moreover, the variation of Aß1-42, IL-6, and TNF-α levels can predict the progression of PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Interleucina-17 , Interleucina-6 , Fator de Necrose Tumoral alfa , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Gravidade do Paciente
3.
Int J Behav Nutr Phys Act ; 21(1): 17, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355565

RESUMO

BACKGROUND: How physical activity (PA) and different sleep traits and overall sleep pattern interact in the development of Parkinson's disease (PD) remain unknown. OBJECTIVE: To prospectively investigate the joint associations of PA and sleep pattern with risk of PD. METHODS: Included were 339,666 PD-free participants from the UK Biobank. Baseline PA levels were grouped into low (< 600 MET-mins/week), medium (600 to < 3000 MET-mins/week) and high (≥ 3000 MET-mins/week) according to the instructions of the UK Biobank. Healthy sleep traits (chronotype, sleep duration, insomnia, snoring, and daytime sleepiness) were scored from 0 to 5 and were categorized into "ideal sleep pattern" (≥ 3 sleep scores) and "poor sleep pattern" (0-2 sleep scores). Hazard ratios (HRs) and 95% confidence intervals (CIs) of PD were estimated by Cox proportional hazards models. RESULTS: During a median of 11.8 years of follow-up, 1,966 PD events were identified. The PD risk was lower in participants with high PA (HR = 0.73; 95% CI: 0.64, 0.84), compared to those with low PA; and participants with ideal sleep pattern also had a lower risk of PD (HR = 0.78; 95% CI: 0.69, 0.87), compared to those with poor sleep pattern. When jointly investigating the combined effect, participants with both high PA and ideal sleep pattern had the lowest risk of incident PD (HR = 0.55; 95% CI: 0.44, 0.69), compared to those with low PA and poor sleep pattern; notably, participants with high PA but poor sleep pattern also gained benefit on PD risk reduction (HR = 0.74; 95% CI: 0.55, 0.99). CONCLUSIONS: Both high PA and ideal sleep pattern were independently associated with lower risk of developing PD, and those with both high PA level and ideal sleep pattern had the lowest risk. Our results suggest that improving PA levels and sleep quality may be promising intervention targets for the prevention of PD.


Assuntos
Doença de Parkinson , Humanos , Estudos de Coortes , Doença de Parkinson/epidemiologia , Sono , Exercício Físico , Comportamento de Redução do Risco , Fatores de Risco
4.
Acta Pharmacol Sin ; 44(7): 1322-1336, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36765267

RESUMO

Depression is one of the common non-motor symptoms of Parkinson's disease (PD). In the clinic, botulinum neurotoxin A (BoNT/A) has been used to treat depression. In this study, we investigated the mechanisms underlying the anti-depressive effect of BoNT/A in a PD mouse model. Mice were administered reserpine (3 µg/mL in the drinking water) for 10 weeks. From the 10th week, BoNT/A (10 U·kg-1·d-1) was injected into the cheek for 3 consecutive days. We showed that chronic administration of reserpine produced the behavioral phenotypes of depression and neurochemical changes in the substantia nigra pars compacta (SNpc) and striatum. BoNT/A treatment significantly ameliorated the depressive-like behaviors, but did not improve TH activity in SNpc of reserpine-treated mice. We demonstrated that BoNT/A treatment reversed reserpine-induced complement and microglia activation in the hippocampal CA1 region. Furthermore, BoNT/A treatment significantly attenuated the microglial engulfment of presynaptic synapses, thus ameliorating the apparent synapse and spine loss in the hippocampus in the reserpine-treated mice. Moreover, BoNT/A treatment suppressed microglia-mediated expression of pro-inflammatory cytokines TNF-α and IL-1ß in reserpine-treated mice. In addition, we showed that BoNT/A (0.1 U/mL) ameliorated reserpine-induced complement and microglia activation in mouse BV2 microglial cells in vitro. We conclude that BoNT/A ameliorates depressive-like behavior in a reserpine-induced PD mouse model through reversing the synapse loss mediated by classical complement induced-microglial engulfment as well as alleviating microglia-mediated proinflammatory responses. BoNT/A ameliorates depressive-like behavior, and reverses synapse loss mediated by classical complement pathway-initiated microglia engulfment as well as alleviates microglia-mediated proinflammatory response in the reserpine-induced Parkinson's disease mouse model.


Assuntos
Toxinas Botulínicas Tipo A , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Microglia/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/farmacologia , Reserpina/metabolismo , Reserpina/farmacologia , Doenças Neuroinflamatórias , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL
5.
Immunol Invest ; 50(4): 406-415, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32462957

RESUMO

Aplastic anemia (AA) is a T cell immune-mediated autoimmune disease. Overactivated CD8+ T cells play a leading role in the pathogenesis of AA, which may be due to disbalance in costimulatory and coinhibitory signals in T cells. In this study, we firstly investigated the expression of OX40, 4-1BB, GITR, ICOS, CTLA-4, LAG-3, and TIM-3 on CD8+ T cells from untreated patients with AA and healthy individuals (HIs) by flow cytometry. Moreover, we further analyzed the phenotype and functional characteristics of CD8+GITR+ T cells to more fully assess the T cell activation dysfunction in AA. We for the first time demonstrated significantly decreased percentage of CD8+GITR+ T cells in AA, and CD8+GITR+CTLA-4+ T cells were significantly higher in patients with AA compared with HIs. Conversely, the percentage of CD8+GITR+granzyme B+ and CD8+GITR+perforin+ T cells in AA patients was significantly reduced. Our preliminary data illustrate that the CD8+GITR+ T cell population might negatively regulate overactive T cell activation in AA.


Assuntos
Anemia Aplástica/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores de Superfície Celular/imunologia , Adulto , Antígenos CD/imunologia , Antígeno CTLA-4/imunologia , Feminino , Humanos , Masculino , Proteína do Gene 3 de Ativação de Linfócitos
6.
J Headache Pain ; 22(1): 38, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34000998

RESUMO

OBJECTIVES: In this study, we investigated the possible analgesic effects of Botulinum toxin type A (BoNT/A) on trigeminal neuralgia (TN). A modified TN mouse model was established by chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) in mice, and the possible roles of microglia toll-like receptor 2 (TLR2) and neuroinflammation was investigated. METHODS: Male C57BL/6 mice were divided into 3 groups, including sham group, vehicle-treated TN group and BoNT/A-treated TN group. Bilateral mechanical pain hypersensitivity, anxiety-like and depressive-like behaviors were evaluated by using von Frey test, open field, elevated plus-maze testing, and forced swimming test in mice, respectively. The mRNA or protein expression levels of toll-like receptors (TLRs), glia activation markers and proinflammatory factors in the trigeminal nucleus caudalis (TNC) were tested by RT-qPCR, immunofluorescence and Western blotting. We also tested the pain behaviors of TN in Tlr2-/- mice. RESULTS: We found that unilateral subcutaneous injection of BoNT/A into the whisker pad on the ipsilateral side of dIoN-CCI mice significantly attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors induced by dIoN-CCI surgery in mice. The dIoN-CCI surgery significantly up-regulated the expression of TLR2, MyD88, CD11b (a microglia marker), IL-1ß, TNF-α and IL-6 in the ipsilateral TNC in mice, and BoNT/A injection significantly inhibited the expression of these factors. Immunostaining results confirmed that BoNT/A injection significantly inhibited the microglia activation in the ipsilateral TNC in dIoN-CCI mice. TLR2 deficiency also alleviated bilateral mechanical pain hypersensitivity and the up-regulation of MyD88 expression in the TNC of dIoN-CCI mice. CONCLUSION: These results indicate that unilateral injection of BoNT/A attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors in dIoN-CCI mice, and the analgesic effects of BoNT/A may be associated with the inhibition of TLR2-mediated neuroinflammation in the TNC.


Assuntos
Toxinas Botulínicas Tipo A , Neuralgia , Neuralgia do Trigêmeo , Animais , Ansiedade/tratamento farmacológico , Toxinas Botulínicas Tipo A/uso terapêutico , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/genética , Neuralgia do Trigêmeo/tratamento farmacológico
7.
J Cell Physiol ; 235(10): 7204-7213, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32020639

RESUMO

Diabetic retinopathy (DR) is a leading cause of acquired blindness among adults. High glucose (HG) induces oxidative injury and apoptosis in retinal ganglion cells (RGCs), serving as a primary pathological mechanism of DR. MIND4-17 activates nuclear-factor-E2-related factor 2 (Nrf2) signaling via modifying one cysteine (C151) residue of Kelch-like ECH-associated protein 1 (Keap1). The current study tested its effect in HG-treated primary murine RGCs. We show that MIND4-17 disrupted Keap1-Nrf2 association, leading to Nrf2 protein stabilization and nuclear translocation, causing subsequent expression of key Nrf2 target genes, including heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1. Functional studies showed that MIND4-17 pretreatment significantly inhibited HG-induced cytotoxicity and apoptosis in primary murine RGCs. Reactive oxygen species production and oxidative injury in HG-treated murine RGCs were attenuated by MIND4-17. Nrf2 silencing (by targeted small interfering RNA) or knockout (by CRISPR/Cas9 method) abolished MIND4-17-induced RGC cytoprotection against HG. Additionally, Keap1 knockout or silencing mimicked and abolished MIND4-17-induced activity in RGCs. In vivo, MIND4-17 intravitreal injection activated Nrf2 signaling and attenuated retinal dysfunction by light damage in mice. We conclude that MIND4-17 activates Nrf2 signaling to protect murine RGCs from HG-induced oxidative injury.


Assuntos
Glucose/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Tiazóis/farmacologia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Técnicas de Inativação de Genes , Glucose/toxicidade , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Neurol Sci ; 41(7): 1909-1912, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31974797

RESUMO

BACKGROUND: The retinal morphological change has been detected in Parkinson's disease. However, the previous studies had a controversial conclusion. The aim of this study was to observe the changes of retinal morphology in patients with Parkinson's disease with different clinical stages based on Hoehn-Yahr stage by spectral domain optical coherence tomography (SD-OCT). METHOD: Fifty-three PD patients and forty-one healthy controls (HC) were enrolled. Subjects were assessed for the retinal structure using SD-OCT and general ophthalmic examinations. The PD group was divided into three subgroups by the Hoehn and Yahr scale: H-Y I stage group, H-Y II stage group, and H-Y III stage group. RESULTS: The mean deviation of visual field had a significant difference among the four groups. The macular retinal thickness (MRT) and macular volume (MV) were obviously decreased in PD patients. And the further statistical analysis showed that the difference appeared between the H-Y III stage group and HC group. The other subgroups had no differences compared with the HC group. CONCLUSION: SD-OCT examination can detect the changes in retinal morphology in PD patients, and it may not be found the difference until the patients are in the H-Y III stage (the middle stage of PD).


Assuntos
Fibras Nervosas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica , Campos Visuais
9.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093080

RESUMO

Wounding is a serious environmental stress in plants. Oxylipins such as jasmonic acid play an important role in defense against wounding. Mechanisms to adapt to wounding have been investigated in vascular plants; however, those mechanisms in nonvascular plants remain elusive. To examine the response to wounding in Physcomitrella patens, a model moss, a proteomic analysis of wounded P. patens was conducted. Proteomic analysis showed that wounding increased the abundance of proteins related to protein synthesis, amino acid metabolism, protein folding, photosystem, glycolysis, and energy synthesis. 12-Oxo-phytodienoic acid (OPDA) was induced by wounding and inhibited growth. Therefore, OPDA is considered a signaling molecule in this plant. Proteomic analysis of a P. patens mutant in which the PpAOS1 and PpAOS2 genes, which are involved in OPDA biosynthesis, are disrupted showed accumulation of proteins involved in protein synthesis in response to wounding in a similar way to the wild-type plant. In contrast, the fold-changes of the proteins in the wild-type plant were significantly different from those in the aos mutant. This study suggests that PpAOS gene expression enhances photosynthesis and effective energy utilization in response to wounding in P. patens.


Assuntos
Bryopsida/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oxirredutases Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Bryopsida/genética , Cromatografia Líquida , Ciclo do Ácido Cítrico/genética , Ciclopentanos/metabolismo , Metabolismo Energético/genética , Ácidos Graxos Insaturados/deficiência , Ácidos Graxos Insaturados/genética , Glicólise/genética , Oxirredutases Intramoleculares/genética , Oxilipinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Biossíntese de Proteínas/genética , Dobramento de Proteína , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem
10.
J Cell Sci ; 130(14): 2382-2393, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28584191

RESUMO

The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr-376) in the short linker between the BAR-PH and GAP domains. The expression of ARHGAP42 variants in mammalian cells was used to elucidate its regulation. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP-bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr-376 to promote motile cell behavior. Thus, phosphorylation of ARHGAP42 Tyr-376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition.


Assuntos
Movimento Celular/fisiologia , Adesões Focais/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo , Animais , Humanos , Camundongos , Fosforilação , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
11.
Blood Cells Mol Dis ; 77: 34-42, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953940

RESUMO

OBJECTIVES: Aplastic anemia (AA) is T cell immune-mediated autoimmune disease. Aberrant T cell activation involves an imbalance in T cell homeostasis in AA. However, whether the T cell activation molecule CD27 and its ligand CD70 participate in the immune pathogenesis of AA remains ill defined. METHODS: The frequencies of CD27/CD70 and perforin/granzyme B in different T cell subsets were detected in AA patients and healthy individuals by flow cytometry. RESULTS: We first time demonstrate a significantly elevated proportion of CD27+ and significantly decreased CD70+ T cells from AA. Changed frequency of CD27+ and CD70+ in different T cell subsets appeared to be associated with AA severity. In very severe aplastic anemia (VSAA) and severe aplastic anemia (SAA), increased CD8+CD27+ T cells present with a cytotoxic effector phenotype by elevating perforin proportion. CONCLUSIONS: Elevated proportion of CD27 in T cells may contribute to distinct immune pathogenesis for different severities of AA. The CD8+CD27+perforin+ T cells combined with CD8+CD70+ T cells may serve as an immune biomarker for AA severity estimation.


Assuntos
Anemia Aplástica/diagnóstico , Anemia Aplástica/metabolismo , Ligante CD27/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Perforina/metabolismo , Subpopulações de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Adulto , Anemia Aplástica/imunologia , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Adulto Jovem
12.
BMC Neurosci ; 20(1): 23, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117957

RESUMO

BACKGROUND: Patients with Parkinson's disease (PD) have elevated levels of brain iron, especially in the nigrostriatal dopaminergic system. The purpose of this study was to evaluate the iron deposition in the substantia nigra (SN) and other deep gray matter nuclei of PD patients using quantitative susceptibility mapping (QSM) and its clinical relationship, and to explore whether there is a gradient of iron deposition pattern in globus pallidus (GP)-fascicula nigrale (FN)-SN pathway. METHODS: Thirty-three PD patients and 26 age- and sex-matched healthy volunteers (HVs) were included in this study. Subjects underwent brain MRI and constructed QSM data. The differences in iron accumulation in the deep gray matter nuclei of the subjects were compared, including the PD group and the control group, the early-stage PD (EPD) group and the late-stage PD (LPD) group. The iron deposition pattern of the GP-FN-SN pathway was analyzed. RESULTS: The PD group showed increased susceptibility values in the FN, substantia nigra pars compacta (SNc), internal globus pallidus (GPi), red nucleus (RN), putamen and caudate nucleus compared with the HV group (P < 0.05). In both PD and HV group, iron deposition along the GP-FN-SN pathway did not show an increasing gradient pattern. The SNc, substantia nigra pars reticulata (SNr) and RN showed significantly increased susceptibility values in the LPD patients compared with the EPD patients. CONCLUSION: PD is closely related to iron deposition in the SNc. The condition of PD patients is related to the SNc and the SNr. There is not an increasing iron deposition gradient along the GP-FN-SN pathway. The source and mechanism of iron deposition in the SN need to be further explored, as does the relationship between the iron deposition in the RN and PD.


Assuntos
Mapeamento Encefálico/métodos , Globo Pálido/metabolismo , Substância Cinzenta/metabolismo , Ferro/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/metabolismo , Neuroimagem , Índice de Gravidade de Doença
13.
Mol Cell Biochem ; 461(1-2): 81-89, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31342299

RESUMO

In pathogenesis of Parkinson's disease (PD), mitochondrial dysfunction causes substantial reactive oxygen species (ROS) production and oxidative stress, leading to dopaminergic (DA) neuronal cell death. Mitochondrial toxins, including MPP+ (1-methyl-4-phenylpyridinium ion) and rotenone, induce oxidative injury in cultured DA neuronal cells. The current study tested the potential effect of SC79, a first-in-class small-molecule Akt activator, against the process. In SH-SY5Y cells and primary murine DA neurons, SC79 significantly attenuated MPP+- and rotenone-induced viability reduction, cell death, and apoptosis. SC79 activated Akt signaling in DA neuronal cells. Akt inhibition (by LY294002 and MK-2206) or CRISPR-Cas9-mediated Akt1 knockout completely abolished SC79-induced DA neuroprotection against MPP+. Further studies demonstrated that SC79 attenuated MPP+- and rotenone-induced ROS production, mitochondrial depolarization, and lipid peroxidation in SH-SY5Y cells and primary DA neurons. Moreover, upregulation of Nrf2-dependent genes (HO1 and NQO1) and Nrf2 protein stabilization were detected in SC79-treated SH-SY5Y cells and primary DA neurons. Together we show that SC79 protects DA neuronal cells from mitochondrial toxins possibly via activation of Akt-Nrf2 signaling.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Acetatos/farmacologia , Benzopiranos/farmacologia , Neurônios Dopaminérgicos/patologia , Ativadores de Enzimas/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotenona/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
14.
Cell Physiol Biochem ; 48(2): 450-460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016785

RESUMO

BACKGROUND/AIMS: Glioma causes significant human mortalities annually. Molecularly-targeted therapy is a focus of glioma research. METHODS: Grb2-associated binding 1 (Gab1) expression and microRNA-29a-3p ("miR-29a-3p") expression in human glioma cells and tissues were tested by Western blotting assay and qRT-PCR assay. shRNA/siRNA strategy was applied to silence Gab1 in human glioma cells. miR-29a or anti-sense miR-29a construct was transfected to human glioma cells. Cell proliferation was tested by BrdU ELISA assay and cell counting assay. RESULTS: We show that expression of Gab1 was significantly elevated in human glioma tissues and cells, which correlated with downregulation of its putative microRNA: miR-29a-3p. In A172 glioma cells and primary human glioma cells, Gab1 shRNA/siRNA inhibited Akt-Erk activation and cell proliferation. Forced-expression of miR-29a-3p downregulated Gab1, inhibiting glioma cell proliferation, whereas miR-29a-3p was in-effective on cell proliferation in Gab1-silenced A172 cells. Furthermore, introduction of a 3'-untranslated region (3'-UTR) mutant Gab1 (UTR-G160A) blocked miR-29a-3p-induced inhibition on Akt signaling and A172 cell proliferation. CONCLUSIONS: miR-29a-3p downregulation leads to Gab1 upregulation to promote glioma cell proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glioma/patologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Antagomirs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioma/metabolismo , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
17.
Purinergic Signal ; 13(4): 579-590, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28905300

RESUMO

Human saphenous vein (HSV) is harvested and prepared prior to implantation as an arterial bypass graft. Injury and the response to injury from surgical harvest and preparation trigger cascades of molecular events and contribute to graft remodeling and intimal hyperplasia. Apoptosis is an early response after implantation that contributes the development of neointimal lesions. Here, we showed that surgical harvest and preparation of HSV leads to vasomotor dysfunction, increased apoptosis and downregulation of the phosphorylation of the anti-apoptotic protein, Niban. A model of subfailure overstretch injury in rat aorta (RA) was used to demonstrate impaired vasomotor function, increased extracellular ATP (eATP) release, and increased apoptosis following pathological vascular injury. The subfailure overstretch injury was associated with activation of p38 MAPK stress pathway and decreases in the phosphorylation of the anti-apoptotic protein Niban. Treatment of RA after overstretch injury with antagonists to purinergic P2X7 receptor (P2X7R) antagonists or P2X7R/pannexin (PanX1) complex, but not PanX1 alone, restored vasomotor function. Inhibitors to P2X7R and PanX1 reduced stretch-induced eATP release. P2X7R/PanX1 antagonism led to decrease in p38 MAPK phosphorylation, restoration of Niban phosphorylation and increases in the phosphorylation of the anti-apoptotic protein Akt in RA and reduced TNFα-stimulated caspase 3/7 activity in cultured rat vascular smooth muscle cells. In conclusion, inhibition of P2X7R after overstretch injury restored vasomotor function and inhibited apoptosis. Treatment with P2X7R/PanX1 complex inhibitors after harvest and preparation injury of blood vessels used for bypass conduits may prevent the subsequent response to injury that lead to apoptosis and represents a novel therapeutic approach to prevent graft failure.


Assuntos
Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Veia Safena/transplante , Manejo de Espécimes/efeitos adversos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apoptose/efeitos dos fármacos , Ponte de Artéria Coronária/métodos , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Veia Safena/efeitos dos fármacos , Veia Safena/metabolismo , Manejo de Espécimes/métodos
18.
Metab Brain Dis ; 32(3): 859-865, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28261756

RESUMO

This study was conducted to investigate the role of different homocysteine metabolism-related vitamin (HMRV) levels in the correlation between hyperhomocysteinemia (HHCY) and ischemic stroke (IS) subtypes. Three hundred and forty-eight IS patients manifesting different vascular subtypes were subclassified on the basis of HMRV deficiencies. Correlation between HHCY and IS subtypes was investigated in all the subgroups. In this study, HHCY was significantly correlated with the IS subtypes in large artery atherosclerosis (OR 1.126, 95%CI: 1.051 ~ 1.206, P = 0.001) and small artery occlusion (OR 1.105, 95%CI: 1.023 ~ 1.193, P = 0.012). Subgroup analysis revealed a correlation between HHCY and IS subgroup (OR 1.201, 1.178, 95%CI: 1.081 ~ 1.334, 1.058 ~ 1.313, P = 0.001, P = 0.003, respectively) in HMRV deficiency, but not significantly with the IS subgroup in normal HMRV levels. Serum vitamin B12 concentrations are inversely correlated with both IS subtypes in HMRV deficiency subgroups (OR 0.992, 0.995, 95%CI: 0.987 ~ 0.996, 0.991 ~ 0.999, P < 0.001, P = 0.007, respectively), which may contribute to HHCY incidence in these populations. The correlation between HHCY and IS subtypes is affected by HMRV levels in this case-control study. Our findings are helpful to understand the inconsistency in prior homocysteine studies. Serum vitamin B12 levels may play a critical role in HHCY incidence in this Chinese population.Cerebrovascular disease has emerged as the leading cause of disability and mortality in both urban and rural areas of China (Neurology branch of Chinese Medical Association 2015). Ischemic stroke (IS) constitutes 60% to 80% of all cerebrovascular disease (Neurology branch of Chinese Medical Association 2014). Among a variety of risk factors, hyperhomocysteinemia (HHCY) has been closely correlated with IS due to intracranial small-vessel disease and extracranial large-artery disease (Selhub et al. 1995; Eikelboom et al. 2000; Alvarez et al. 2012; Jeon et al. 2014). However, the failure to lower homocysteine (HCY) via homocysteine metabolism-related vitamin (HMRV, including folic acid and vitamin B12 but not vitamin B6 in this study) supplementation to reduce stroke morbidity questions the role of HCY as a risk factor for stroke (Lonn et al. 2006; Hankey et al. 2010). Theoretically, HMRV supplementation merely lowers the incidence of stroke induced by HHCY resulting from HMRV deficiency, whereas HHCY-induced stroke concomitant with normal HMRV levels may be refractory to treatment. The correlation between HCY varying with HMRV levels and IS subtypes is still unclear. In this study, we investigated the impact of variation in HMRV levels on the correlation between HHCY and IS subtypes in 348 acute IS patients with large and small vessel diseases. We sought to determine the factors underlying the conflicting results associated with lowering HCY by HMRV supplementation to reduce stroke incidence.


Assuntos
Ácido Fólico/sangue , Homocisteína/sangue , Hiper-Homocisteinemia/sangue , Arteriosclerose Intracraniana/sangue , Rim/fisiologia , Acidente Vascular Cerebral/sangue , Vitamina B 12/sangue , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Estudos de Casos e Controles , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/epidemiologia , China/epidemiologia , Feminino , Humanos , Hiper-Homocisteinemia/diagnóstico por imagem , Hiper-Homocisteinemia/epidemiologia , Arteriosclerose Intracraniana/diagnóstico por imagem , Arteriosclerose Intracraniana/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia
19.
J Vasc Surg ; 64(1): 210-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25704409

RESUMO

BACKGROUND: Injury to saphenous vein grafts during surgical preparation may contribute to the subsequent development of intimal hyperplasia, the primary cause of graft failure. Surgical skin markers currently used for vascular marking contain gentian violet and isopropanol, which damage tissue and impair physiologic functions. Brilliant blue FCF (FCF) is a nontoxic dye alternative that may also ameliorate preparation-induced injury. METHODS: Porcine saphenous vein (PSV) was used to evaluate the effect of FCF on physiologic responses in a muscle bath. Cytotoxicity of FCF was measured using human umbilical venous smooth muscle cells. Effect of FCF on the development of intimal hyperplasia was evaluated in organ culture using PSV. Intracellular calcium fluxes and contractile responses were measured in response to agonists and inhibitors in rat aorta and human saphenous vein. RESULTS: Marking with FCF did not impair smooth muscle contractile responses and restored stretch injury-induced loss in smooth muscle contractility of PSV. Gentian violet has cytotoxic effects on human umbilical venous smooth muscle cells, whereas FCF is nontoxic. FCF inhibited intimal thickening in PSV in organ culture. Contraction induced by 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate and intracellular calcium flux were inhibited by FCF, oxidized adenosine triphosphate, KN-62, and brilliant blue G, suggesting that FCF may inhibit the purinergic receptor P2X7. CONCLUSIONS: Our studies indicated that FCF is a nontoxic marking dye for vein grafts that ameliorates vein graft injury and prevents intimal thickening, possibly due to P2X7 receptor inhibition. FCF represents a nontoxic alternative for vein graft marking and a potentially therapeutic approach to enhance outcome in autologous transplantation of human saphenous vein into the coronary and peripheral arterial circulation.


Assuntos
Benzenossulfonatos/farmacologia , Corantes/farmacologia , Veia Safena/efeitos dos fármacos , Enxerto Vascular/métodos , Lesões do Sistema Vascular/prevenção & controle , Animais , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Citoproteção , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Hiperplasia , Técnicas In Vitro , Masculino , Neointima , Técnicas de Cultura de Órgãos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Veia Safena/lesões , Veia Safena/fisiopatologia , Veia Safena/transplante , Suínos , Enxerto Vascular/efeitos adversos , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/fisiopatologia , Vasoconstrição/efeitos dos fármacos
20.
Neuroimmunomodulation ; 23(4): 230-238, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846628

RESUMO

OBJECTIVE: Minocycline, a tetracycline antibiotic, has shown anti-inflammatory effects in cerebral ischemia and neurodegenerative disease; however, the molecular mechanisms underlying this effect have not been clearly identified. Since NLRP3 inflammasome activation controls the maturation and release of proinflammatory cytokines, especially interleukin-1ß (IL-1ß) and IL-18 in ischemia stroke, we suppose that minocycline may be involved in the regulation of NLRP3 inflammasome activation. METHODS: We investigated the effects of minocycline on NLRP3 inflammasome activation using the transient middle cerebral artery occlusion (tMCAO) mouse model and an in vitro oxygen-glucose deprivation/reoxygenation injury model in BV2 microglial cells. RESULTS: We found that minocycline administrated 1 h after reperfusion can improve neurological disorder, reduce infarct volume, and alleviate cerebral edema. Meanwhile, we showed that minocycline prevented the activation of microglias and attenuated NLRP3 inflammasome signaling after tMCAO injury. Furthermore, we found that the pretreatment of minocycline significantly inhibited signal 1 and signal 2 of NLRP3 inflammasome activation in BV2 cells. CONCLUSION: We demonstrated that minocycline can ameliorate ischemia-induced brain damage via inhibiting NLRP3 inflammasome activation.


Assuntos
Antibacterianos/farmacologia , Isquemia Encefálica/metabolismo , Minociclina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Antibacterianos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Linhagem Celular , Relação Dose-Resposta a Droga , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Minociclina/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA