RESUMO
Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Successfully isolated and cultured DPCs from Small-tail Han sheep could provide a good model for the study of hair follicle development mechanism in vitro. DPCs were isolated using enzyme digestion and dissecting microscope from Small-tail Han sheep. Adherent cells were identified by cell characteristics, particular gene expression, differentiation capability to adipocyte and osteoblast using specific differentiation mediums. Additionally, flow cytometry was used to detect the cell cycle of DPCs. Cells originating from the dermal papilla showed the morphological appearance of mesenchymal cells (fibroblast-like cells). Purified DPCs were positive for α-SMA (α smooth muscle actin) and vimentin; in addition to their strong proliferation abilities in vitro, these DPCs can be differentiated into adipocyte and osteoblasts lineage under appropriate culture condition. DPCs were successfully isolated and subcultured from Small-tail Han sheep, which exhibited progenitor cell features and multiple differentiation potency. It provides a material for studying the molecular mechanism of hair follicle development and hair cycle, which will promote wool production in the future.
RESUMO
To explore the approaches and diagnostic yield of genetic testing for renal disease in children, we describe the genotype and phenotype of the national cohort of children with renal disease from 13 different regions of China recruited from 2014 to 2018 by building up the multicenter registration system (Chinese Children Genetic Kidney Disease Database, CCGKDD). Genetic diagnosis was confirmed in 42.1% of our cohort of 1001 pediatric patients with clinical suspicion of a genetic renal disease. Of the 106 distinct monogenetic disorders detected, 15 accounted for 60.7% of genetic diagnoses. The diagnostic yield was 29.1% in steroid resistant nephritic syndrome (SRNS), 61.4% in cystic renal disease, 17.0% in congenital anomalies of the kidney and urinary tract (CAKUT), 62.3% in renal tubular disease/renal calcinosis, and 23.9% for chronic kidney disease (CKD) 3 to 5 stage with unknown origin. Genetic approaches of target gene sequence (TGS), singleton whole-exome sequencing (WES) and trio-WES were performed with diagnostic rates of 44.8%, 36.2%, and 42.6%, respectively. The early use of trio-WES could improve the diagnostic rate especially in renal tubular disease and calcinosis. We report the genetic spectrum of Chinese children with renal disease. Establishment of the CCGKDD will improve the genetic work on renal disease.
Assuntos
Exoma/genética , Predisposição Genética para Doença , Doenças Renais Císticas/genética , Insuficiência Renal Crônica/genética , Criança , Pré-Escolar , China/epidemiologia , Estudos de Coortes , Feminino , Testes Genéticos , Humanos , Rim/metabolismo , Rim/patologia , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/patologia , Masculino , Fenótipo , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/patologia , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Sequenciamento do ExomaRESUMO
Non-contact measurement based on the 3D reconstruction of sheep bodies can alleviate the stress response in sheep during manual measurement of body dimensions. However, data collection is easily affected by environmental factors and noise, which is not conducive to practical production needs. To address this issue, this study proposes a non-contact data acquisition system and a 3D point cloud reconstruction method for sheep bodies. The collected sheep body data can provide reference data for sheep breeding and fattening. The acquisition system consists of a Kinect v2 depth camera group, a sheep passage, and a restraining pen, synchronously collecting data from three perspectives. The 3D point cloud reconstruction method for sheep bodies is implemented based on C++ language and the Point Cloud Library (PCL). It processes noise through pass-through filtering, statistical filtering, and random sample consensus (RANSAC). A conditional voxel filtering box is proposed to downsample and simplify the point cloud data. Combined with the RANSAC and Iterative Closest Point (ICP) algorithms, coarse and fine registration are performed to improve registration accuracy and robustness, achieving 3D reconstruction of sheep bodies. In the base, 135 sets of point cloud data were collected from 20 sheep. After 3D reconstruction, the reconstruction error of body length compared to the actual values was 0.79%, indicating that this method can provide reliable reference data for 3D point cloud reconstruction research of sheep bodies.
RESUMO
Simple sequence repeats (SSRs), the markers with the highest polymorphism and co-dominance degrees, offer a crucial genetic research resource. Limited SSR markers in blackhead seabream have been reported. The availability of the blackhead seabream genome assembly provided the opportunity to carry out genome-wide identification for all microsatellite markers, and bioinformatic analyses open the way for developing a microsatellite genome-wide database in blackhead seabream. In this study, a total of 412,381 SSRs were identified in the 688.08 Mb genome by Krait software. Whole-genome sequences (10×) of 42 samples were aligned against the reference genome and genotyped using the HipSTR tools by comparing and counting repeat number variation across the SSR loci. A total of 156,086 SSRs with a 2-4 bp repeat were genotyped by HipSTR tools, which accounted for 55.78% of the 2-4 bp SSRs in the reference genome. High accuracy of genotyping was observed by comparing HipSTR tools and PCR amplification. A set of 109,131 loci with a number of alleles ≥ 3 and with a number of genotyped individuals ≥ 6 were reserved to constitute the polymorphic SSR database. Fifty-one polymorphic SSR loci were identified through PCR amplification. This strategy to develop polymorphic SSR markers not only obtained a large set of polymorphic SSRs but also eliminated the need for laborious experimental screening. SSR markers developed in this study may facilitate blackhead seabream research, which lays a certain foundation for further gene tagging and genetic linkage analysis, such as marker-assisted selection, genetic mapping, as well as comparative genomic analysis.
Assuntos
Dourada , Humanos , Animais , Dourada/genética , Genoma de Planta , Mapeamento Cromossômico , Polimorfismo Genético , Repetições de Microssatélites/genéticaRESUMO
Fibroblast growth factor 9 (FGF9) is crucial for the growth and development of hair follicles (HFs); however, its role in sheep wool growth is unknown. Here, we clarified the role of FGF9 in HF growth in the small-tailed Han sheep by quantifying FGF9 expression in skin tissue sections collected at different periods. Moreover, we evaluated the effects of FGF9 protein supplementation on hair shaft growth in vitro and FGF9 knockdown on cultured dermal papilla cells (DPCs). The relationship between FGF9 and the Wnt/ß-catenin signaling pathway was examined, and the underlying mechanisms of FGF9-mediated DPC proliferation were investigated. The results show that FGF9 expression varies throughout the HF cycle and participates in wool growth. The proliferation rate and cell cycle of FGF9-treated DPCs substantially increase compared to that of the control group, and the mRNA and protein expression of CTNNB1, a Wnt/ß-catenin signaling pathway marker gene, is considerably lower than that in the control group. The opposite occurs in FGF9-knockdown DPCs. Moreover, other signaling pathways are enriched in the FGF9-treated group. In conclusion, FGF9 accelerates the proliferation and cell cycle of DPCs and may regulate HF growth and development through the Wnt/ß-catenin signaling pathway.
Assuntos
Fator 9 de Crescimento de Fibroblastos , Folículo Piloso , Animais , Ovinos , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Proliferação de Células , Cabelo , Via de Sinalização WntRESUMO
Perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCEs) exceeding 25% over the past decade and effective passivation for the interface with high trap density plays a significant role in this process. Here, two organic molecules are studied as passivators, and it is demonstrated that an advantageous molecular geometry and intermolecular ordering, aside from the functional moieties, are of great significance for effective and extensive passivation. Besides, the passivation molecules spontaneously form a uniform passivation network adjacent to the bottom surface of perovskite films during a top-down crystallization via liquid medium annealing, which greatly reduces defect-assisted recombination throughout the whole perovskite/SnO2 interface. The champion device yields an in-lab PCE of 25.05% (certified 24.39%). The investigation provides a more comprehensive understanding of passivation and a new avenue to achieve effective bottom-interface engineering for perovskite photovoltaics.
RESUMO
Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
RESUMO
PURPOSE: Arsenic combined with all-trans retinoic acid (ATRA) is the standard of care for adult acute promyelocytic leukemia (APL). However, the safety and effectiveness of this treatment in pediatric patients with APL have not been reported on the basis of larger sample sizes. METHODS: We conducted a multicenter trial at 38 hospitals in China. Patients with newly diagnosed APL were stratified into two risk groups according to baseline WBC count and FLT3-ITD mutation. ATRA plus arsenic trioxide or oral arsenic without chemotherapy were administered to the standard-risk group, whereas ATRA, arsenic trioxide, or oral arsenic plus reduced-dose anthracycline were administered to the high-risk group. Primary end points were event-free survival and overall survival at 2 years. RESULTS: We enrolled 193 patients with APL. After a median follow-up of 28.9 months, the 2-year overall survival rate was 99% (95% CI, 97 to 100) in the standard-risk group and 95% (95% CI, 90 to 100) in the high-risk group (P = .088). The 2-year event-free survival was 97% (95% CI, 93 to 100) in the standard-risk group and 90% (95% CI, 83 to 96) in the high-risk group (P = .252). The plasma levels of arsenic were significantly elevated after treatment, with a stable effective level ranging from 42.9 to 63.2 ng/mL during treatment. In addition, plasma, urine, hair, and nail arsenic levels rapidly decreased to normal 6 months after the end of treatment. CONCLUSION: Arsenic combined with ATRA is effective and safe in pediatric patients with APL, although long-term follow-up is still needed.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Trióxido de Arsênio/administração & dosagem , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/administração & dosagem , Adolescente , Antraciclinas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Trióxido de Arsênio/efeitos adversos , Criança , Pré-Escolar , China , Feminino , Humanos , Lactente , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/mortalidade , Masculino , Intervalo Livre de Progressão , Fatores de Tempo , Tretinoína/efeitos adversosRESUMO
Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients.