Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 602(7897): 449-454, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082447

RESUMO

Phylogenomics of bats suggests that their echolocation either evolved separately in the bat suborders Yinpterochiroptera and Yangochiroptera, or had a single origin in bat ancestors and was later lost in some yinpterochiropterans1-6. Hearing for echolocation behaviour depends on the inner ear, of which the spiral ganglion is an essential structure. Here we report the observation of highly derived structures of the spiral ganglion in yangochiropteran bats: a trans-otic ganglion with a wall-less Rosenthal's canal. This neuroanatomical arrangement permits a larger ganglion with more neurons, higher innervation density of neurons and denser clustering of cochlear nerve fascicles7-13. This differs from the plesiomorphic neuroanatomy of Yinpterochiroptera and non-chiropteran mammals. The osteological correlates of these derived ganglion features can now be traced into bat phylogeny, providing direct evidence of how Yangochiroptera differentiated from Yinpterochiroptera in spiral ganglion neuroanatomy. These features are highly variable across major clades and between species of Yangochiroptera, and in morphospace, exhibit much greater disparity in Yangochiroptera than Yinpterochiroptera. These highly variable ganglion features may be a neuroanatomical evolutionary driver for their diverse echolocating strategies4,14-17 and are associated with the explosive diversification of yangochiropterans, which include most bat families, genera and species.


Assuntos
Evolução Biológica , Quirópteros , Orelha Interna , Ecolocação , Gânglio Espiral da Cóclea , Animais , Quirópteros/anatomia & histologia , Quirópteros/classificação , Quirópteros/fisiologia , Orelha Interna/anatomia & histologia , Orelha Interna/inervação , Orelha Interna/fisiologia , Ecolocação/fisiologia , Filogenia , Gânglio Espiral da Cóclea/anatomia & histologia , Gânglio Espiral da Cóclea/fisiologia
2.
Nature ; 607(7920): 726-731, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859179

RESUMO

Endothermy underpins the ecological dominance of mammals and birds in diverse environmental settings1,2. However, it is unclear when this crucial feature emerged during mammalian evolutionary history, as most of the fossil evidence is ambiguous3-17. Here we show that this key evolutionary transition can be investigated using the morphology of the endolymph-filled semicircular ducts of the inner ear, which monitor head rotations and are essential for motor coordination, navigation and spatial awareness18-22. Increased body temperatures during the ectotherm-endotherm transition of mammal ancestors would decrease endolymph viscosity, negatively affecting semicircular duct biomechanics23,24, while simultaneously increasing behavioural activity25,26 probably required improved performance27. Morphological changes to the membranous ducts and enclosing bony canals would have been necessary to maintain optimal functionality during this transition. To track these morphofunctional changes in 56 extinct synapsid species, we developed the thermo-motility index, a proxy based on bony canal morphology. The results suggest that endothermy evolved abruptly during the Late Triassic period in Mammaliamorpha, correlated with a sharp increase in body temperature (5-9 °C) and an expansion of aerobic and anaerobic capacities. Contrary to previous suggestions3-14, all stem mammaliamorphs were most probably ectotherms. Endothermy, as a crucial physiological characteristic, joins other distinctive mammalian features that arose during this period of climatic instability28.


Assuntos
Evolução Biológica , Orelha Interna , Mamíferos , Termogênese , Animais , Fenômenos Biomecânicos , Temperatura Corporal , Orelha Interna/anatomia & histologia , Orelha Interna/fisiologia , Extinção Biológica , Fósseis , História Antiga , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Ductos Semicirculares/anatomia & histologia , Ductos Semicirculares/fisiologia
3.
Nature ; 561(7724): 533-537, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224748

RESUMO

The evolution of the mammalian jaw is one of the most important innovations in vertebrate history, and underpins the exceptional radiation and diversification of mammals over the last 220 million years1,2. In particular, the transformation of the mandible into a single tooth-bearing bone and the emergence of a novel jaw joint-while incorporating some of the ancestral jaw bones into the mammalian middle ear-is often cited as a classic example of the repurposing of morphological structures3,4. Although it is remarkably well-documented in the fossil record, the evolution of the mammalian jaw still poses the paradox of how the bones of the ancestral jaw joint could function both as a joint hinge for powerful load-bearing mastication and as a mandibular middle ear that was delicate enough for hearing. Here we use digital reconstructions, computational modelling and biomechanical analyses to demonstrate that the miniaturization of the early mammalian jaw was the primary driver for the transformation of the jaw joint. We show that there is no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont-mammaliaform transition, as previously thought5-8. Although a shift in the recruitment of the jaw musculature occurred during the evolution of modern mammals, the optimization of mandibular function to increase bite force while reducing joint loads did not occur until after the emergence of the neomorphic mammalian jaw joint. This suggests that miniaturization provided a selective regime for the evolution of the mammalian jaw joint, followed by the integration of the postdentary bones into the mammalian middle ear.


Assuntos
Evolução Biológica , Orelha Média/anatomia & histologia , Mamíferos/anatomia & histologia , Mandíbula/anatomia & histologia , Animais , Orelha Média/fisiologia , Fósseis , Mamíferos/fisiologia , Mandíbula/fisiologia , Modelos Biológicos , Filogenia , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/fisiologia , Dente/anatomia & histologia , Dente/fisiologia
4.
Nature ; 562(7728): E27, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30108361

RESUMO

The asterisked footnote to Extended Data Table 1 should state '*Including Thomasia and Haramiyavia'. This has been corrected online.

5.
Nature ; 558(7708): 108-112, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795343

RESUMO

Haramiyida was a successful clade of mammaliaforms, spanning the Late Triassic period to at least the Late Jurassic period, but their fossils are scant outside Eurasia and Cretaceous records are controversial1-4. Here we report, to our knowledge, the first cranium of a large haramiyidan from the basal Cretaceous of North America. This cranium possesses an amalgam of stem mammaliaform plesiomorphies and crown mammalian apomorphies. Moreover, it shows dental traits that are diagnostic of isolated teeth of supposed multituberculate affinities from the Cretaceous of Morocco, which have been assigned to the enigmatic 'Hahnodontidae'. Exceptional preservation of this specimen also provides insights into the evolution of the ancestral mammalian brain. We demonstrate the haramiyidan affinities of Gondwanan hahnodontid teeth, removing them from multituberculates, and suggest that hahnodontid mammaliaforms had a much wider, possibly Pangaean distribution during the Jurassic-Cretaceous transition.


Assuntos
Fósseis , Mapeamento Geográfico , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Animais , Encéfalo/anatomia & histologia , Dentição , América do Norte , Crânio/anatomia & histologia
7.
Nature ; 548(7667): 291-296, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792929

RESUMO

Stem mammaliaforms are Mesozoic forerunners to mammals, and they offer critical evidence for the anatomical evolution and ecological diversification during the earliest mammalian history. Two new eleutherodonts from the Late Jurassic period have skin membranes and skeletal features that are adapted for gliding. Characteristics of their digits provide evidence of roosting behaviour, as in dermopterans and bats, and their feet have a calcaneal calcar to support the uropagatium as in bats. The new volant taxa are phylogenetically nested with arboreal eleutherodonts. Together, they show an evolutionary experimentation similar to the iterative evolutions of gliders within arboreal groups of marsupial and placental mammals. However, gliding eleutherodonts possess rigid interclavicle-clavicle structures, convergent to the avian furculum, and they retain shoulder girdle plesiomorphies of mammaliaforms and monotremes. Forelimb mobility required by gliding occurs at the acromion-clavicle and glenohumeral joints, is different from and convergent to the shoulder mobility at the pivotal clavicle-sternal joint in marsupial and placental gliders.


Assuntos
Fósseis , Locomoção , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Filogenia , Animais , Aves/anatomia & histologia , China , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Dieta , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Mamíferos/classificação , Marsupiais/fisiologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Ombro/anatomia & histologia , Pele/anatomia & histologia , Crânio/anatomia & histologia
8.
Nature ; 548(7667): 326-329, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792934

RESUMO

Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar-pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.


Assuntos
Aclimatação , Evolução Biológica , Orelha Média/anatomia & histologia , Ingestão de Alimentos , Ecossistema , Fósseis , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Animais , Dieta , Herbivoria , Incisivo , Locomoção , Mamíferos/classificação , Dente Molar , Filogenia
9.
J Hum Evol ; 162: 103094, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808474

RESUMO

The hyoid apparatus plays an integral role in swallowing, respiration, and vocalization in mammals. Most placental mammals have a rod-shaped basihyal connected to the basicranium via both soft tissues and a mobile bony chain-the anterior cornu-whereas anthropoid primates have broad, shield-like or even cup-shaped basihyals suspended from the basicranium by soft tissues only. How the unique anthropoid hyoid morphology evolved is unknown, and hyoid morphology of nonanthropoid primates is poorly documented. Here we use phylogenetic comparative methods and linear morphometrics to address knowledge gaps in hyoid evolution among primates and their euarchontan outgroups. We find that dermopterans have variable reduction of cornu elements. Cynocephalus volans are sexually dimorphic in hyoid morphology. Tupaia and all lemuroids except Daubentonia have a fully ossified anterior cornu connecting a rod-shaped basihyal to the basicranium; this is the ancestral mammalian pattern that is also characteristic of the last common ancestor of Primates. Haplorhines exhibit a reduced anterior cornu, and anthropoids underwent further increase in basihyal aspect ratio values and in relative basihyal volume. Convergent with haplorhines, lorisoid strepsirrhines independently evolved a broad basihyal and reduced anterior cornua. While a reduced anterior cornu is hypothesized to facilitate vocal tract lengthening and lower formant frequencies in some mammals, our results suggest vocalization adaptations alone are unlikely to drive the iterative reduction of anterior cornua within Primates. Our new data on euarchontan hyoid evolution provide an anatomical basis for further exploring the form-function relationships of the hyoid across different behaviors, including vocalization, chewing, and swallowing.


Assuntos
Placenta , Primatas , Animais , Feminino , Haplorrinos , Osso Hioide/anatomia & histologia , Filogenia , Gravidez , Primatas/anatomia & histologia
10.
Nature ; 526(7573): 380-4, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469049

RESUMO

The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.


Assuntos
Evolução Biológica , Fósseis , Tegumento Comum/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Abdome , Adaptação Fisiológica , Animais , Diafragma , Orelha Média , Cabelo/anatomia & histologia , História Antiga , Locomoção , Mamíferos/fisiologia , Filogenia , Esqueleto , Pele/anatomia & histologia , Espanha , Coluna Vertebral , Tórax , Dente
11.
Nature ; 500(7461): 163-7, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925238

RESUMO

The earliest evolution of mammals and origins of mammalian features can be traced to the mammaliaforms of the Triassic and Jurassic periods that are extinct relatives to living mammals. Here we describe a new fossil from the Middle Jurassic that has a mandibular middle ear, a gradational transition of thoracolumbar vertebrae and primitive ankle features, but highly derived molars with a high crown and multiple roots that are partially fused. The upper molars have longitudinal cusp rows that occlude alternately with those of the lower molars. This specialization for masticating plants indicates that herbivory evolved among mammaliaforms, before the rise of crown mammals. The new species shares the distinctive dental features of the eleutherodontid clade, previously represented only by isolated teeth despite its extensive geographic distribution during the Jurassic. This eleutherodontid was terrestrial and had ambulatory gaits, analogous to extant terrestrial mammals such as armadillos or rock hyrax. Its fur corroborates that mammalian integument had originated well before the common ancestor of living mammals.


Assuntos
Adaptação Biológica , Evolução Biológica , Fósseis , Animais , Osso e Ossos/anatomia & histologia , China , Mamíferos , Filogenia , Especificidade da Espécie , Dente/anatomia & histologia
12.
Proc Natl Acad Sci U S A ; 112(51): E7101-9, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26630008

RESUMO

As one of the earliest-known mammaliaforms, Haramiyavia clemmenseni from the Rhaetic (Late Triassic) of East Greenland has held an important place in understanding the timing of the earliest radiation of the group. Reanalysis of the type specimen using high-resolution computed tomography (CT) has revealed new details, such as the presence of the dentary condyle of the mammalian jaw hinge and the postdentary trough for mandibular attachment of the middle ear-a transitional condition of the predecessors to crown Mammalia. Our tests of competing phylogenetic hypotheses with these new data show that Late Triassic haramiyids are a separate clade from multituberculate mammals and are excluded from the Mammalia. Consequently, hypotheses of a Late Triassic diversification of the Mammalia that depend on multituberculate affinities of haramiyidans are rejected. Scanning electron microscopy study of tooth-wear facets and kinematic functional simulation of occlusion with virtual 3D models from CT scans confirm that Haramiyavia had a major orthal occlusion with the tallest lingual cusp of the lower molars occluding into the lingual embrasure of the upper molars, followed by a short palinal movement along the cusp rows alternating between upper and lower molars. This movement differs from the minimal orthal but extensive palinal occlusal movement of multituberculate mammals, which previously were regarded as relatives of haramiyidans. The disparity of tooth morphology and the diversity of dental functions of haramiyids and their contemporary mammaliaforms suggest that dietary diversification is a major factor in the earliest mammaliaform evolution.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Mandíbula/anatomia & histologia , Dente/anatomia & histologia , Animais , Tamanho Corporal , Fósseis/anatomia & histologia , Groenlândia , História Antiga , Mamíferos/classificação , Modelos Dentários , Filogenia
13.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179517

RESUMO

Multiple mammalian lineages independently evolved a definitive mammalian middle ear (DMME) through breakdown of Meckel's cartilage (MC). However, the cellular and molecular drivers of this evolutionary transition remain unknown for most mammal groups. Here, we identify such drivers in the living marsupial opossum Monodelphis domestica, whose MC transformation during development anatomically mirrors the evolutionary transformation observed in fossils. Specifically, we link increases in cellular apoptosis and TGF-BR2 signalling to MC breakdown in opossums. We demonstrate that a simple change in TGF-ß signalling is sufficient to inhibit MC breakdown during opossum development, indicating that changes in TGF-ß signalling might be key during mammalian evolution. Furthermore, the apoptosis that we observe during opossum MC breakdown does not seemingly occur in mouse, consistent with homoplastic DMME evolution in the marsupial and placental lineages.


Assuntos
Ossículos da Orelha/anatomia & histologia , Orelha Média/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Animais , Evolução Biológica , Fósseis , Mamíferos , Camundongos , Monodelphis , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Nature ; 476(7361): 442-5, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866158

RESUMO

Placentals are the most abundant mammals that have diversified into every niche for vertebrates and dominated the world's terrestrial biotas in the Cenozoic. A critical event in mammalian history is the divergence of eutherians, the clade inclusive of all living placentals, from the metatherian-marsupial clade. Here we report the discovery of a new eutherian of 160 Myr from the Jurassic of China, which extends the first appearance of the eutherian-placental clade by about 35 Myr from the previous record, reducing and resolving a discrepancy between the previous fossil record and the molecular estimate for the placental-marsupial divergence. This mammal has scansorial forelimb features, and provides the ancestral condition for dental and other anatomical features of eutherians.


Assuntos
Fósseis , Mamíferos/anatomia & histologia , Mamíferos/classificação , Marsupiais/anatomia & histologia , Marsupiais/classificação , Filogenia , Placenta/fisiologia , Animais , China , Feminino , História Antiga , Mamíferos/embriologia , Mamíferos/fisiologia , Mandíbula/anatomia & histologia , Marsupiais/fisiologia , Dente Molar/anatomia & histologia , Gravidez , Fatores de Tempo
16.
Nature ; 450(7172): 1011-9, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075580

RESUMO

Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.


Assuntos
Evolução Biológica , Mamíferos/fisiologia , Animais , Ecologia , Fósseis , História Antiga , Mamíferos/classificação , Filogenia
17.
Nature ; 446(7133): 288-93, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17361176

RESUMO

Detachment of the three tiny middle ear bones from the reptilian mandible is an important innovation of modern mammals. Here we describe a Mesozoic eutriconodont nested within crown mammals that clearly illustrates this transition: the middle ear bones are connected to the mandible via an ossified Meckel's cartilage. The connected ear and jaw structure is similar to the embryonic pattern in modern monotremes (egg-laying mammals) and placental mammals, but is a paedomorphic feature retained in the adult, unlike in monotreme and placental adults. This suggests that reversal to (or retention of) this premammalian ancestral condition is correlated with different developmental timing (heterochrony) in eutriconodonts. This new eutriconodont adds to the evidence of homoplasy of vertebral characters in the thoraco-lumbar transition and unfused lumbar ribs among early mammals. This is similar to the effect of homeobox gene patterning of vertebrae in modern mammals, making it plausible to extrapolate the effects of Hox gene patterning to account for homoplastic evolution of vertebral characters in early mammals.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Mamíferos/classificação , Animais , Padronização Corporal/genética , Osso e Ossos/metabolismo , Orelha/anatomia & histologia , Extinção Biológica , Extremidades/anatomia & histologia , Pé/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Arcada Osseodentária/anatomia & histologia , Mamíferos/embriologia , Mamíferos/genética , Camundongos , Filogenia
18.
Nature ; 450(7166): 93-7, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17972884

RESUMO

Tribosphenic molars of basal marsupials and placentals are a major adaptation, with the protocone (pestle) of the upper molar crushing and grinding in the talonid basin (mortar) on the lower molar. The extinct pseudo-tribosphenic mammals have a reversed tribosphenic molar in which a pseudo-talonid is anterior to the trigonid, to receive the pseudo-protocone of the upper molar. The pseudo-protocone is analogous to the protocone, but the anteriorly placed pseudo-talonid is opposite to the posterior talonid basin of true tribosphenic mammals. Here we describe a mammal of the Middle Jurassic period with highly derived pseudo-tribosphenic molars but predominantly primitive mandibular and skeletal features, and place it in a basal position in mammal phylogeny. Its shoulder girdle and limbs show fossorial features similar to those of mammaliaforms and monotremes, but different compared with those of the earliest-known Laurasian tribosphenic (boreosphenid) mammals. The find reveals a much greater range of dental evolution in Mesozoic mammals than in their extant descendants, and strengthens the hypothesis of homoplasy of 'tribosphenic-like' molars among mammals.


Assuntos
Evolução Biológica , Fósseis , Mamíferos/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , China , História Antiga , Mandíbula/anatomia & histologia , Filogenia , Esqueleto
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220552, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37839446

RESUMO

Instantaneous head posture (IHP) can extensively alter resting hyoid position in humans, yet postural effects on resting hyoid position remain poorly documented among mammals in general. Clarifying this relationship is essential for evaluating interspecific variation in hyoid posture across evolution, and understanding its implications for hyolingual soft tissue function and swallowing motor control. Using Didelphis virginiana as a model, we conducted static manipulation experiments to show that head flexion shifts hyoid position rostrally relative to the cranium across different gapes. IHP-induced shifts in hyoid position along the anteroposterior axis are comparable to in vivo hyoid protraction distance during swallowing. IHP also has opposite effects on passive genio- and stylohyoid muscle lengths. High-speed biplanar videoradiography suggests Didelphis consistently swallows at neutral to flexed posture, with stereotyped hyoid kinematics across different head postures. IHP change can affect suprahyoid muscle force production by shifting their positions on the length-tension curve, and redirecting lines of action and the resultant force from supra- and infrahyoid muscles. We hypothesize that demands on muscle performance may constrain the range of swallowing head postures in mammals. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Assuntos
Deglutição , Músculos do Pescoço , Animais , Humanos , Deglutição/fisiologia , Fenômenos Biomecânicos , Músculos do Pescoço/fisiologia , Postura , Mamíferos
20.
Commun Biol ; 6(1): 367, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046052

RESUMO

Skeletal simplification occurred in multiple vertebrate clades over the last 500 million years, including the evolution from premammalian cynodonts to mammals. This transition is characterised by the loss and reduction of cranial bones, the emergence of a novel jaw joint, and the rearrangement of the jaw musculature. These modifications have long been hypothesised to increase skull strength and efficiency during feeding. Here, we combine digital reconstruction and biomechanical modelling to show that there is no evidence for an increase in cranial strength and biomechanical performance. Our analyses demonstrate the selective functional reorganisation of the cranial skeleton, leading to reduced stresses in the braincase and the skull roof but increased stresses in the zygomatic region through this transition. This cranial functional reorganisation, reduction in mechanical advantage, and overall miniaturisation in body size are linked with a dietary specialisation to insectivory, permitting the subsequent morphological and ecological diversification of the mammalian lineage.


Assuntos
Evolução Biológica , Crânio , Animais , Filogenia , Crânio/anatomia & histologia , Vertebrados , Mamíferos/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA