Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflamm Res ; 72(7): 1327-1339, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37386145

RESUMO

BACKGROUND: Transient Receptor Potential Ankyrin 1 (TRPA1) is a cation channel that mediates pain, itch, cough, and neurogenic inflammation in response to pungent compounds such as acrolein in cigarette smoke. TRPA1 is also activated by endogenous factors and promotes inflammation in asthma models. We have recently shown that TRPA1 is upregulated by inflammatory cytokines in A549 human lung epithelial cells. Here, we explored the effects of Th1 and Th2-type inflammation on TRPA1. METHODS AND RESULTS: TRPA1 expression and function was studied in A549 human lung epithelial cells. To induce inflammation, the cells were exposed to a combination of cytokines TNF-α and IL-1ß; and to model Th1 or Th2-type responses, IFN-γ or IL-4/IL-13 was added, respectively. TRPA1 expression (measured by RT-PCR and Western blot) and function (assessed by Fluo-3AM intracellular calcium measurement) was enhanced under the influence of TNF-α + IL-1ß. IFN-γ further enhanced TRPA1 expression and function, whereas IL-4 and IL-13 suppressed them. The effects of IFN-γ and IL-4 on TRPA1 expression were reversed by the Janus kinase (JAK) inhibitors baricitinib and tofacitinib, and those of IL-4 also by the STAT6 inhibitor AS1517499. The glucocorticoid dexamethasone downregulated TRPA1 expression, whereas the PDE4 inhibitor rolipram had no effect. Under all conditions, TRPA1 blockade was found to reduce the production of LCN2 and CXCL6. CONCLUSIONS: TRPA1 expression and function in lung epithelial cells was upregulated under inflammatory conditions. IFN-γ further increased TRPA1 expression while IL-4 and IL-13 suppressed that in a JAK-STAT6 dependent manner which is novel. TRPA1 also modulated the expression of genes relevant to innate immunity and lung disease. We propose that the paradigm of Th1 and Th2 inflammation is a major determinant of TRPA1 expression and function, which should be considered when targeting TRPA1 for pharmacotherapy in inflammatory (lung) disease.


Assuntos
Interleucina-13 , Fator de Necrose Tumoral alfa , Humanos , Interleucina-13/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Pulmão , Citocinas/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Células Th1/metabolismo , Células Th2 , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
2.
Pulm Pharmacol Ther ; 70: 102059, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302984

RESUMO

Transient receptor potential ankyrin-1 (TRPA1) is an ion channel mediating pain and cough signals in sensory neurons. We and others have shown that TRPA1 is also expressed in some non-neuronal cells and supports inflammatory responses. To address the pathogenesis and to uncover potential targets for pharmacotherapy in inflammatory lung diseases, we set out to study the expression of TRPA1 in human A549 lung epithelial cells under inflammatory conditions. TRPA1 expression was determined by RT-qPCR and Western blotting at a mRNA and protein level, respectively and its function was studied by Fluo 3-AM intracellular Ca2+ measurement in A549 lung epithelial cells. TRPA1 promoter activity was assessed by reporter gene assay. TRPA1 expression was very low in A549 cells in the absence of inflammatory stimuli. Tumor necrosis factor-α (TNF-α) significantly increased TRPA1 expression and a synergy was found between TNF-α, interleukin-1ß (IL-1ß) and interferon-γ (IFN-γ). Reporter gene experiments indicate that the combination of TNF-α and IL-1ß increases TRPA1 promoter activity while the effect of IFN-γ seems to be non-transcriptional. Interestingly, the glucocorticoid dexamethasone downregulated TRPA1 expression in A549 cells by reducing TRPA1 mRNA stability in a transcription-dependent manner. Furthermore, pharmacological blockade of TRPA1 reduced the production of the pro-inflammatory cytokine IL-8. In conclusion, TRPA1 was found to be expressed and functional in human A549 lung epithelial cells under inflammatory conditions. The anti-inflammatory steroid dexamethasone reduced TRPA1 expression through post-transcriptional mechanisms. The results reveal TRPA1 as a potential mediator and drug target in inflammatory lung conditions.


Assuntos
Citocinas , Pulmão , Canal de Cátion TRPA1 , Células A549 , Células Epiteliais , Expressão Gênica , Humanos , Canal de Cátion TRPA1/genética , Fator de Necrose Tumoral alfa
3.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805042

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is an ion channel mainly studied in sensory neurons where it mediates itch, pain and neurogenic inflammation. Recently, some nonneuronal cells have also been shown to express TRPA1 to support inflammatory responses. To address the role of TRPA1 in skin inflammation, we aimed to investigate TRPA1 expression in keratinocytes. HaCaT cells (a model of human keratinocytes) and skin biopses from wild-type and TRPA1 deficient mice were used in the studies. TRPA1 expression in nonstimulated keratinocytes was very low but significantly inducible by the proinflammatory cytokine tumor necrosis factor (TNF) in an nuclear factor kappa B (NF-κB), and mitogen-activated protein (MAP) kinase (p38 and c-Jun N-terminal kinase, JNK)-dependent manner. Interestingly, drugs widely used to treat skin inflammation, the calcineurin inhibitors tacrolimus and cyclosporine and the glucocorticoid dexamethasone, significantly decreased TRPA1 expression. Furthermore, pharmacological inhibition and genetic deletion of TRPA1 reduced the synthesis of TNF-induced monocyte chemoattractant protein 1 (MCP-1) in keratinocytes and mouse skin biopsies. In conclusion, these findings point to an inflammatory role for TRPA1 in keratinocytes and present TRPA1 as a potential drug target in inflammatory skin diseases.


Assuntos
Queratinócitos/metabolismo , Pele/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Biópsia , Inibidores de Calcineurina/farmacologia , Quimiocina CCL2/metabolismo , Feminino , Glucocorticoides/metabolismo , Células HEK293 , Células HaCaT , Humanos , Inflamação , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA