Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(27): 18799-18807, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38938190

RESUMO

A methodology based on molecular dynamics simulations is presented to determine the chemical potential of thiol self-assembled monolayers on a gold surface. The thiol de-solvation and then the monolayer formation are described by thermodynamic integration with a gradual decoupling of one molecule from the environment, with the necessary corrections to account for standard state changes. The procedure is applied both to physisorbed undissociated thiol molecules and to chemisorbed dissociated thiyl radicals, considering in the latter case the possible chemical potential of the produced hydrogen. We considered monolayers formed by either 7-mercapto-4-methylcoumarin (MMC) or 3-mercapto-propanoic acid (MPA) on a flat gold surface: the free energy profiles with respect to the monolayer density are consistent with a transition from a very stable lying-down phase at low densities to a standing-up phase at higher densities, as expected. The maximum densities of thermodynamically stable monolayers are compared to experimental measures performed with reference-free grazing-incidence X-ray fluorescence (RF-GIXRF) on the same systems, finding a better agreement in the case of chemisorbed thiyl radicals.

2.
Phys Chem Chem Phys ; 24(36): 22083-22090, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36073159

RESUMO

Self-assembled monolayers (SAM) of 7-mercapto-4-methylcoumarin (MMC) on a flat gold surface were studied by molecular dynamics (MD) simulations, reference-free grazing incidence X-ray fluorescence (GIXRF) and X-ray photoelectron spectroscopy (XPS), to determine the maximum monolayer density and to investigate the nature of the molecule/surface interface. In particular, the protonation state of the sulfur atom upon adsorption was analyzed, since some recent literature presented evidence for physisorbed thiols (preserving the S-H bond), unlike the common picture of chemisorbed thiyls (losing the hydrogen). MD with a specifically tailored force field was used to simulate either thiol or thiyl monolayers with increasing number of molecules, to determine the maximum dynamically stable densities. This result was refined by computing the monolayer chemical potential as a function of the density with the bennet acceptance ratio method, based again on MD simulations. The monolayer density was also measured with GIXRF, which provided the absolute quantification of the number of sulfur atoms in a dense self-assembled monolayer (SAM) on flat gold surfaces. The sulfur core level binding energies in the same monolayers were measured by XPS, fitting the recorded spectra with the binding energies proposed in the literature for free or adsorbed thiols and thiyls, to get insight on the nature of the molecular species present in the layer. The comparison of theoretical and experimental SAM densities, and the XPS analysis strongly support the picture of a monolayer formed by chemisorbed, dissociated thiyls.

3.
Soft Matter ; 16(18): 4383-4388, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32239055

RESUMO

The azobenzene chromophore is used as a functional dye for the development of smart microfluidic devices. A single layer microfluidic channel is produced, exploiting the potential of a dye doped PDMS formulation. The key advantage of this approach is the possibility to control the fluid flow by means of a simple light stimulus. Furthermore, the deformation can be controlled in time, space and intensity, giving rise to several degrees of freedom in the actuation of the channel squeezing. A future perspective will be the implementation of the microfluidic platform with structured light, to have the possibility to control the flow in a parallel and reversible manner at several points, modifying the pattern in real time.

4.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382622

RESUMO

Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to ß-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Cálcio/metabolismo , Cardiomiopatias/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Biomimética , Cardiomiopatias/genética , Cardiomiopatias/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Acoplamento Excitação-Contração/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Especificidade por Substrato
5.
J Antimicrob Chemother ; 73(1): 160-164, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106584

RESUMO

BACKGROUND: Possible drug-drug interactions (DDIs) between antiretrovirals (ARVs) and direct-acting antiviral agents (DAAs) are of some concern. OBJECTIVES: To investigate ARV plasma trough concentrations (Ctrough) before and during DAAs in patients treated in the real world. METHODS: Single-centre, prospective, observational study including HIV/HCV coinfected persons undergoing DAA treatment. Self-reported adherence was assessed and ARVs Ctrough measured by HPLC-UV. Blood samples were collected before and after 2 months of DAA treatment. RESULTS: One-hundred and thirty-seven patients were included: 21.2% treated with ombitasvir/paritaprevir/ritonavir ± dasabuvir (2D/3D) and 78.8% with sofosbuvir-based regimens. Suboptimal Ctrough before and during DAA was found, respectively, in 3 (10.3%) and 3 (10.3%) cases treated with 2D/3D, and 16 (14.8%) and 11 (10.2%) with sofosbuvir-based regimens, even if self-reported ARV adherence was always ≥93%. In 2D/3D-treated patients, median darunavir Ctrough during DAAs was significantly lower than observed before DAAs [1125 ng/mL (IQR, 810-1616) versus 1903 ng/mL (IQR 1387-3983), respectively] (n = 5; P = 0.009), with a 40.9% decrease. In the same group, no differences in atazanavir or raltegravir concentrations were found. In patients treated with sofosbuvir-based regimens, Ctrough of all ARVs were similar before and during DAAs. CONCLUSIONS: In the real world of HIV/HCV coinfected patients, ARV plasma concentrations during DAAs were generally not different from those found before anti-HCV treatment. Although assessed in a small number of patients, darunavir concentrations during 2D/3D showed a significant reduction when compared with those found before DAAs. ARV plasma concentrations measurement during anti-HCV treatment may give useful information for managing HIV/HCV coinfected persons receiving treatment for both infections.


Assuntos
Antirretrovirais , Infecções por HIV/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , 2-Naftilamina , Anilidas/sangue , Anilidas/farmacocinética , Anilidas/uso terapêutico , Antirretrovirais/sangue , Antirretrovirais/farmacocinética , Antirretrovirais/uso terapêutico , Carbamatos/sangue , Carbamatos/farmacocinética , Carbamatos/uso terapêutico , Coinfecção/tratamento farmacológico , Ciclopropanos , Interações Medicamentosas , Quimioterapia Combinada , Feminino , Humanos , Lactamas Macrocíclicas , Compostos Macrocíclicos/sangue , Compostos Macrocíclicos/farmacocinética , Compostos Macrocíclicos/uso terapêutico , Masculino , Pessoa de Meia-Idade , Prolina/análogos & derivados , Estudos Prospectivos , Ritonavir/sangue , Ritonavir/farmacocinética , Ritonavir/uso terapêutico , Sofosbuvir/sangue , Sofosbuvir/farmacocinética , Sofosbuvir/uso terapêutico , Sulfonamidas/sangue , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Resultado do Tratamento , Uracila/análogos & derivados , Uracila/sangue , Uracila/farmacocinética , Uracila/uso terapêutico , Valina
6.
BMC Infect Dis ; 18(1): 25, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310590

RESUMO

BACKGROUND: HIV-positive patients carry an increased risk of HPV infection and associated cancers. Therefore, prevalence and patterns of HPV infection at different anatomical sites, as well as theoretical protection of nonavalent vaccine should be investigated. Aim was to describe prevalence and predictors of oral HPV detection in HIV-positive men, with attention to nonavalent vaccine-targeted HPV types. Further, co-occurrence of HPV DNA at oral cavity and at anal site was assessed. METHODS: This cross-sectional, clinic-based study included 305 HIV-positive males (85.9% MSM; median age 44.7 years; IQR: 37.4-51.0), consecutively observed within an anal cancer screening program, after written informed consent. Indication for anal screening was given by the HIV physician during routine clinic visit. Paired oral rinse and anal samples were processed for the all HPV genotypes with QIASYMPHONY and a PCR with MY09/MY11 primers for the L1 region. RESULTS: At the oral cavity, HPV DNA was detected in 64 patients (20.9%), and in 28.1% of these cases multiple HPV infections were found. Prevalence of oral HPV was significantly lower than that observed at the anal site (p < 0.001), where HPV DNA was found in 199 cases (85.2%). Oral HPV tended to be more frequent in patients with detectable anal HPV than in those without (p = 0.08). Out of 265 HPV DNA-positive men regardless anatomic site, 59 cases (19.3%) had detectable HPV at both sites, and 51 of these showed completely different HPV types. At least one nonavalent vaccine-targeted HPV type was found in 17/64 (26.6%) of patients with oral and 199/260 (76.5%) with anal infection. At multivariable analysis, factors associated with positive oral HPV were: CD4 cells <200/µL (versus CD4 cells >200/µL, p = 0.005) and >5 sexual partners in the previous 12 months (versus 0-1 partner, p = 0.008). CONCLUSIONS: In this study on Italian HIV-positive men (predominantly MSM), oral HPV DNA was detected in approximately one fifth of tested subjects, but prevalence was significantly lower than that observed at anal site. Low CD4 cell count and increasing number of recent sexual partners significantly increased the odds of positive oral HPV. The absence of co-occurrence at the two anatomical sites may suggest different routes or timing of infection.


Assuntos
DNA Viral/metabolismo , Infecções por HIV/diagnóstico , Papillomaviridae/genética , Infecções por Papillomavirus/diagnóstico , Adulto , Canal Anal/virologia , Contagem de Linfócito CD4 , Estudos Transversais , DNA Viral/isolamento & purificação , Genótipo , Homossexualidade Masculina , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Boca/virologia , Análise Multivariada , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Reação em Cadeia da Polimerase , Prevalência
7.
Anal Bioanal Chem ; 408(12): 3155-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873220

RESUMO

In the present paper, a reliable and rugged thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) method was developed to determine the composition of ultrathin films consisting of binary blends of functional polystyrene (PS) and polymethylmethacrylate (PMMA) grafted to a silicon wafer. A general methodology will be given to address the composition determination problem for binary or even multicomponent polymer brush systems using the PS/PMMA-based samples as a paradigmatic example. In this respect, several distinct tailor-made materials were developed to ensure reliable calibration and validation stages. The analytical method was tested on unknown samples to follow the composition evolution in PS/PMMA brushes during the grafting reaction. A preferential grafting of the PMMA was revealed in full agreement with its preferential interaction with the SiO2 polar surface.

8.
Nanotechnology ; 25(27): 275601, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24960172

RESUMO

This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190-340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s.

9.
Nanotechnology ; 25(4): 045301, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24394198

RESUMO

The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol(-1) was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 °C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine.

10.
ACS Appl Polym Mater ; 5(3): 2079-2087, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427013

RESUMO

The sequential infiltration synthesis (SIS) of inorganic materials in nanostructured block copolymer templates has rapidly progressed in the last few years to develop functional nanomaterials with controllable properties. To assist this rapid evolution, expanding the capabilities of nondestructive methods for quantitative characterization of the materials properties is required. In this paper, we characterize the SIS process on three model polymers with different infiltration profiles through ex situ quantification by reference-free grazing incidence X-ray fluorescence. More qualitative depth distribution results were validated by means of X-ray photoelectron spectroscopy and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy.

11.
ACS Appl Mater Interfaces ; 15(50): 57992-58002, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37991460

RESUMO

Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials.

12.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297895

RESUMO

Novel materials with defined composition and structures at the nanoscale are increasingly desired in several research fields spanning a wide range of applications. The development of new approaches of synthesis that provide such control is therefore required in order to relate the material properties to its functionalities. Self-assembling materials such as block copolymers (BCPs), in combination with liquid phase infiltration (LPI) processes, represent an ideal strategy for the synthesis of inorganic materials into even more complex and functional features. This review provides an overview of the mechanism involved in the LPI, outlining the role of the different polymer infiltration parameters on the resulting material properties. We report newly developed methodologies that extend the LPI to the realisation of multicomponent and 3D inorganic nanostructures. Finally, the recently reported implementation of LPI into different applications such as photonics, plasmonics and electronics are highlighted.

13.
Opt Lett ; 36(8): 1344-6, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21499351

RESUMO

We report on the optical properties of active silicon (Si)-rich Si3N4 microdisk cavities in the visible range. We have studied the correlation between the quality (Q) factor of the cavities and the active material deposition parameters. Microphotoluminescence measurements revealed subangstrom whispering galley modes resonances and a maximum Q of 104 around 760 nm. These values improve significantly the best results reported so far for Si-based light-emitting circular resonators in the visible range. In contrast to what is reported for Si-rich SiO2-based microcavities, we demonstrate the absence of a spectral widening at high pump fluxes associated to carrier absorption mechanisms, which allows high emitted power without degrading the Q of the cavity. These results open the route toward the monolithic integration of those structures into more complex circuits including Si photodetectors.

14.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924480

RESUMO

In the continuous downscaling of device features, the microelectronics industry is facing the intrinsic limits of conventional lithographic techniques. The development of new synthetic approaches for large-scale nanopatterned materials with enhanced performances is therefore required in the pursuit of the fabrication of next-generation devices. Self-assembled materials as block copolymers (BCPs) provide great control on the definition of nanopatterns, promising to be ideal candidates as templates for the selective incorporation of a variety of inorganic materials when combined with sequential infiltration synthesis (SIS). In this review, we report the latest advances in nanostructured inorganic materials synthesized by infiltration of self-assembled BCPs. We report a comprehensive description of the chemical and physical characterization techniques used for in situ studies of the process mechanism and ex situ measurements of the resulting properties of infiltrated polymers. Finally, emerging optical and electrical properties of such materials are discussed.

15.
Nanomaterials (Basel) ; 10(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32045986

RESUMO

In this work, we performed a systematic study on the effect of the geometry of pre-patterned templates and spin-coating conditions on the self-assembling process of colloidal nanospheres. To achieve this goal, large-scale templates, with different size and shape, were generated by direct laser-writer lithography over square millimetre areas. When deposited over patterned templates, the ordering dynamics of the self-assembled nanospheres exhibits an inverse trend with respect to that observed for the maximisation of the correlation length ξ on a flat surface. Furthermore, the self-assembly process was found to be strongly dependent on the height (H) of the template sidewalls. In particular, we observed that, when H is 0.6 times the nanospheres diameter and spinning speed 2500 rpm, the formation of a confined and well ordered monolayer is promoted. To unveil the defects generation inside the templates, a systematic assessment of the directed self-assembly quality was performed by a novel method based on Delaunay triangulation. As a result of this study, we found that, in the best deposition conditions, the self-assembly process leads to well-ordered monolayer that extended for tens of micrometres within the linear templates, where 96.2% of them is aligned with the template sidewalls.

16.
ACS Nano ; 12(7): 7076-7085, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29952543

RESUMO

We investigated the dewetting process on flat and chemically patterned surfaces of ultrathin films (thickness between 2 and 15 nm) of a cylinder forming polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) spin coated on poly(styrene- r-methyl methacrylate) random copolymers (RCPs). When the PS- b-PMMA film dewets on a 2 nm-thick RCP layer, the ordering of the hexagonally packed PMMA cylinders in the dewetted structures extends over distances far exceeding the correlation length obtained in continuous block copolymer (BCP) films. As a result, micrometer-sized circular droplets featuring defectless single grains of self-assembled PS- b-PMMA with PMMA cylinders perpendicularly oriented with respect to the substrate are generated and randomly distributed on the substrate. Additionally, alignment of the droplets along micrometric lines was achieved by performing the dewetting process on large-scale chemically patterned stripes of 2 nm thick RCP films by laser lithography. By properly adjusting the periodicity of the chemical pattern, it was possible to tune and select the geometrical characteristics of the dewetted droplets in terms of maximum thickness, contact angle and diameter while maintaining the defectless single grain perpendicular cylinder morphology of the circular droplets.

17.
Sci Rep ; 8(1): 11305, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054503

RESUMO

Controlling the location and the distribution of hot spots is a crucial aspect in the fabrication of surface-enhanced Raman spectroscopy (SERS) substrates for bio-analytical applications. The choice of a suitable method to tailor the dimensions and the position of plasmonic nanostructures becomes fundamental to provide SERS substrates with significant signal enhancement, homogeneity and reproducibility. In the present work, we studied the influence of the long-range ordering of different flexible gold-coated Si nanowires arrays on the SERS activity. The substrates are made by nanosphere lithography and metal-assisted chemical etching. The degree of order is quantitatively evaluated through the correlation length (ξ) as a function of the nanosphere spin-coating speed. Our findings showed a linear increase of the SERS signal for increasing values of ξ, coherently with a more ordered and dense distribution of hot spots on the surface. The substrate with the largest ξ of 1100 nm showed an enhancement factor of 2.6 · 103 and remarkable homogeneity over square-millimetres area. The variability of the signal across the substrate was also investigated by means of a 2D chemical imaging approach and a standard methodology for its practical calculation is proposed for a coherent comparison among the data reported in literature.

18.
ACS Appl Mater Interfaces ; 9(12): 11054-11063, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263052

RESUMO

The morphological evolution of cylinder-forming poly(styrene)-b-poly(methyl methacrylate) block copolymer (BCP) thick films treated at high temperatures in the rapid thermal processing (RTP) machine was monitored by means of in-depth grazing-incidence small-angle X-ray scattering (GISAXS). The use of this nondisruptive technique allowed one to reveal the formation of buried layers composed of both parallel- and perpendicular-oriented cylinders as a function of the film thickness (24 ≤ h ≤ 840 nm) and annealing time (0 ≤ t ≤ 900 s). Three distinct behaviors were observed depending on the film thickness. Up to h ≤ 160 nm, a homogeneous film consisting of perpendicular-oriented cylinders is observed. When h is between 160 and 700 nm, a decoupling process between both the air-BCP and substrate-BCP interfaces takes place, leading to the formation of mixed orientations (parallel and perpendicular) of the cylinders. Finally, for h > 700 nm, the two interfaces are completely decoupled, and the formation of a superficial layer of about 50 nm composed of perpendicular cylinders is observed. Furthermore, the through-film morphology affects the nanodomain long-range order, which substantially decreases in correspondence with the beginning of the decoupling process. When the thick samples are exposed to longer thermal treatments, an increase in the long-range order of the nanodomains occurs, without any sensible variation of the thickness of the superficial layer.

19.
ACS Appl Mater Interfaces ; 9(37): 31215-31223, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28195457

RESUMO

Block copolymers (BCPs) are emerging as a cost-effective nanofabrication tool to complement conventional optical lithography because they self-assemble in highly ordered polymeric templates with well-defined sub-20-nm periodic features. In this context, cylinder-forming polystyrene-block-poly(methyl methacrylate) BCPs are revealed as an interesting material of choice because the orientation of the nanostructures with respect to the underlying substrate can be effectively controlled by a poly(styrene-random-methyl methacrylate) random copolymer (RCP) brush layer grafted to the substrate prior to BCP deposition. In this work, we investigate the self-assembly process and lateral order evolution in RCP + BCP systems consisting of cylinder-forming PS-b-PMMA (67 kg mol-1, PS fraction of ∼70%) films with thicknesses of 30, 70, 100, and 130 nm deposited on RCP brush layers having thicknesses ranging from 2 to 20 nm. The self-assembly process is promoted by a rapid thermal processing machine operating at 250 °C for 300 s. The level of lateral order is determined by measuring the correlation length (ξ) in the self-assembled BCP films. Moreover, the amount of solvent (Φ) retained in the RCP + BCP systems is measured as a function of the thicknesses of the RCP and BCP layers, respectively. In the 30-nm-thick BCP films, an increase in Φ as a function of the thickness of the RCP brush layer significantly affects the self-assembly kinetics and the final extent of the lateral order in the BCP films. Conversely, no significant variations of ξ are observed in the 70-, 100-, and 130-nm-thick BCP films with increasing Φ.

20.
ACS Appl Mater Interfaces ; 9(18): 15685-15697, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28397488

RESUMO

The self-assembly (SA) of diblock copolymers (DBCs) based on phase separation into different morphologies of small and high-density features is widely investigated as a patterning and nanofabrication technique. The integration of conventional top-down approaches with the bottom-up SA of DBCs enables the possibility to address the gap in nanostructured lateral length standards for nanometrology, consequently supporting miniaturization processes in device fabrication. On this topic, we studied the pattern characteristic dimensions (i.e., center-to-center distance L0 and diameter D) of a cylinder-forming polystyrene-b-poly( methyl methacrylate) PS-b-PMMA (54 kg mol-1, styrene fraction 70%) DBC when confined within periodic SiO2 trenches of different widths (W, ranging between 75 and 600 nm) and fixed length (l, 5.7 µm). The characteristic dimensions of the PMMA cylinder structure in the confined configurations were compared with those obtained on a flat surface (L0 = 27.8 ± 0.5 nm, D = 13.0 ± 1.0 nm). The analysis of D as a function of W evolution indicates that the eccentricity of the PMMA cylinders decreases as a result of the deformation of the cylinder in the direction perpendicular to the trenches. The center-to-center distance in the direction parallel to the long side of the trenches (L0l) is equal to L0 measured on the flat surface, whereas the one along the short side (L0w) is subjected to an appreciable variation (ΔL0w = 5 nm) depending on W. The possibility of finely tuning L0w maintaining constant L0l paves the way to the realization of a DBC-based transfer standard for lateral length calibration with periods in the critical range between 20 and 50 nm wherein no commercial transfer standards are available. A prototype transfer standard with cylindrical holes was used to calibrate the linear correction factor c(Δx')xx' of an atomic force microscope for a scan length of Δx' = 1 µm. The relative standard uncertainty of the correction factor was only 1.3%, and the second-order nonlinear correction was found to be significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA