Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 58(8): 3690-3701, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350027

RESUMO

This study investigated the presence and human hazards associated with pesticides and other anthropogenic chemicals identified in kale grown in urban and rural environments. Pesticides and related compounds (i.e., surfactants and metabolites) in kale samples were evaluated using a nontargeted data acquisition for targeted analysis method which utilized a pesticide mixture containing >1,000 compounds for suspect screening and quantification. We modeled population-level exposures and assessed noncancer hazards to DEET, piperonyl butoxide, prometon, secbumeton, terbumeton, and spinosyn A using nationally representative estimates of kale consumption across life stages in the US. Our findings indicate even sensitive populations (e.g., pregnant women and children) are not likely to experience hazards from these select compounds were they to consume kale from this study. However, a strictly nontargeted chemical analytical approach identified a total of 1,822 features across all samples, and principal component analysis revealed that the kale chemical composition may have been impacted by agricultural growing practices and environmental factors. Confidence level 2 compounds that were ≥5 times more abundant in the urban samples than in rural samples (p < 0.05) included chemicals categorized as "flavoring and nutrients" and "surfactants" in the EPA's Chemicals and Products Database. Using the US-EPA's Cheminformatics Hazard Module, we identified that many of the nontarget compounds have predicted toxicity scores of "very high" for several end points related to human health. These aspects would have been overlooked using traditional targeted analysis methods, although more information is needed to ascertain whether the compounds identified through nontargeted analysis are of environmental or human health concern. As such, our approach enabled the identification of potentially hazardous compounds that, based on their hazard assessment score, merit follow-up investigations.


Assuntos
Brassica , Praguicidas , Gravidez , Criança , Feminino , Humanos , Fazendas , Medição de Risco , Praguicidas/análise
2.
Environ Sci Technol ; 58(25): 11084-11095, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860676

RESUMO

Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present in situ, fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor. We aggregated mobile data at 500 m spatial resolution and reported average mixing ratios for 75 km of the corridor. Mean and median aggregated values were 31.4 and 23.3 ppt, respectively, and a majority (75%) of 500 m grid cells were above 10.9 ppt, the lifetime exposure concentration corresponding to 100-in-one million excess cancer risk (1 × 10-4). A small subset (3.3%) were above 109 ppt (1000-in-one million cancer risk, 1 × 10-3); these tended to be near EtO-emitting facilities, though we observed plumes over 10 km from the nearest facilities. Many plumes were highly correlated with other measured gases, indicating potential emission sources, and a subset was measured simultaneously with a second commercial analyzer, showing good agreement. We estimated EtO for 13 census tracts, all of which were higher than EPA estimates (median difference of 21.3 ppt). Our findings provide important information about EtO concentrations and potential exposure risks in a key industrial region and advance the application of EtO analytical methods for ambient sampling and mobile monitoring for air toxics.


Assuntos
Monitoramento Ambiental , Óxido de Etileno , Louisiana , Monitoramento Ambiental/métodos , Humanos , Poluentes Atmosféricos/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-38760534

RESUMO

BACKGROUND: Soil is an understudied and underregulated pathway of chemical exposure, particularly for agricultural workers who cultivate food in soils. Little is known about how agricultural workers spend their time and how they may contact soil while growing food. Exposure factors are behavioral and environmental variables used in exposure estimation. OBJECTIVES: Our study aimed to derive exposure factors describing how growers engage in different tasks and use those factors to advance the use of time-activity data to estimate soil ingestion exposures among agricultural workers. METHODS: We administered a meso-activity-based, season-specific soil contact activity questionnaire to 38 fruit and vegetable growers. We asked growers to estimate the frequency and duration of six meso-activities and describe how they completed them. We used questionnaire data to derive exposure factors and estimate empirical and simulated exposures to a hypothetical contaminant in soil via incidental ingestion using daily, hourly, and hourly-task-specific ingestion rates. RESULTS: We generated exposure factors characterizing the frequency and duration of six meso-activities by season, and self-reported soil contact, glove use, and handwashing practices by meso-activity and season. Seasonal average daily doses (ADDs) were similar across all three forms of ingestion rates. No consistent patterns regarding task-specific contributions to seasonal or annual ADDs were observed.

4.
PLoS One ; 19(4): e0296840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625852

RESUMO

Kale is a nutrient-dense leafy vegetable associated with wide-ranging health benefits. It is tolerant of drought and temperature fluctuations, and could thus serve an increasingly important role in providing a safe and nutritious food supply during the climate crisis, while kale's ease of cultivation and ability to be grown in a wide range of soils make it a good fit for urban agriculture. In this pilot study we explored potential differences between kale grown at urban versus rural farms. We planted kale seedlings (Darkibor variety) at three urban and four rural farms in and around Baltimore City, Maryland, instructed farmers to cultivate them using their usual growing practices, harvested the kale from fields and points of distribution, and analyzed it for concentrations of carotenoids, vitamins C and K1, ten nutritional elements, and eight non-essential metals. Although sample sizes for some analyses were in some cases too small to produce statistically significant results, we identified potentially meaningful differences in concentrations of several components between urban and rural kale samples. Compared to urban samples, mean concentrations of carotenoids and vitamins were 22-38% higher in rural field samples. By contrast, mean concentrations for eight nutritional elements were higher in urban field samples by as much as 413% for iron. Compared to rural field samples, mean concentrations of nine non-essential metals were higher in urban samples, although lead and cadmium concentrations for all samples were below public health guidelines. Some urban-rural differences were more pronounced than those identified in prior research. For six elements, variance within urban and rural farms was greater than variance between urban and rural farms, suggesting urbanicity may not be the primary driver of some observed differences. For some nutrients, mean concentrations were higher than upper ranges reported in prior estimates, suggesting kale may have the potential to be more nutrient-dense than previously estimated. The nutritive and metals composition of this important crop, and the factors that influence it, merit continued investigation given its growing popularity.


Assuntos
Brassica , Projetos Piloto , Fazendas , Nutrientes , Vitaminas , Carotenoides
5.
J Expo Sci Environ Epidemiol ; 33(1): 140-154, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253407

RESUMO

BACKGROUND: Agricultural workers' exposure to soil contaminants is not well characterized. Activity pattern data are a useful exposure assessment tool to estimate extent of soil contact, though existing data do not sufficiently capture the range and magnitude of soil contact in the agricultural context. OBJECTIVE: We introduce meso-activity, or specific tasks, to improve traditional activity pattern methodology. We propose a conceptual framework to organize the factors that may modify soil exposure and impact soil contact estimates within each meso-activity in agriculture. We build upon models from the US EPA to demonstrate an application of this framework to dose estimation. METHODS: We conducted in-depth interviews with sixteen fruit and vegetable growers in Maryland to characterize factors that influence soil exposure in agriculture. For illustrative purposes, we demonstrate the application of the framework to translate our qualitative data into quantitative estimates of soil contact using US EPA models for ingestion and dermal exposure. RESULTS: Growers discussed six tasks, or meso-activities, involving interaction with soil and described ten factors that may impact the frequency, duration and intensity of soil contact. We organized these factors into four categories (i.e., Environmental, Activity, Timing and Receptor; EAT-R) and developed a framework to improve agricultural exposure estimation and guide future research. Using information from the interviews, we estimated average daily doses for several agricultural exposure scenarios. We demonstrated how the integration of EAT-R qualitative factors into quantitative tools for exposure assessment produce more rigorous estimates of exposure that better capture the true variability in agricultural work. SIGNIFICANCE: Our study demonstrates how a meso-activity-centered framework can be used to refine estimates of exposure for agricultural workers. This framework will support the improvement of indirect exposure assessment tools (e.g., surveys and questionnaires) and inform more comprehensive and appropriate direct observation approaches to derive quantitative estimations of soil exposure. IMPACT STATEMENT: We propose a novel classification of activity pattern data that links macro and micro-activities through the quantification and characterization of meso-activities and demonstrate how the application of our qualitative framework improves soil exposure estimation for agricultural workers. These methodological advances may inform a more rigorous approach to the evaluation of pesticide and other chemical and biological exposures incurred by persons engaged in the cultivation of agricultural commodities in soil.


Assuntos
Fazendeiros , Praguicidas , Humanos , Praguicidas/análise , Agricultura , Solo , Inquéritos e Questionários
6.
J Expo Sci Environ Epidemiol ; 33(4): 602-609, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149702

RESUMO

BACKGROUND: Urine is an abundant and useful medium for measuring biomarkers related to chemical exposures in infants and children. Identification of novel biomarkers is greatly enhanced with non-targeted analysis (NTA), a powerful methodology for broad chemical analysis of environmental and biological specimens. However, collecting urine in non-toilet trained children presents many challenges, and contamination from specimen collection can impact NTA results. OBJECTIVES: We optimized a caregiver-driven method for collecting urine from infants and children using cotton pads and commercially available disposable diapers for NTA and demonstrate its applicability to various children biomonitoring studies. METHODS: Experiments were first performed to evaluate the effects of processing method (i.e., centrifuge vs. syringe), storage temperature, and diaper brand on recovery of urine absorbed to cotton pads. Caregivers of 11 children (<2 years) used and retained diapers (with cotton pads) to collect their child's urine for 24 h. Specimens were analyzed via a NTA method implementing an exclusion list of ions related to contamination from collection materials. RESULTS: Centrifuging cotton pads through a small-pore membrane, compared to a manual syringe method, and storing diapers at 4 °C, compared to room temperature, resulted in larger volumes of recovered sample. This method was successfully implemented to recover urine from cotton pads collected in the field; between 5-9 diapers were collected per child in 24 h, and the total mean volume of urine recovered was 44.7 (range 26.7-71.1) mL. NTA yielded a list of compounds present in urine and/or stool that may hold promise as biomarkers of chemical exposures from a variety of sources. IMPACT STATEMENT: Infant and children urine is a valuable matrix for studies of the early life exposome, in that numerous biological markers of exposure and outcome can be derived from a single analysis. Depending on the nature of the exposure study, it may be the case that a simple collection method that can be facilitated by caregivers of young children is desirable, especially when time-integrated samples or large volumes of urine are needed. We describe the process for development and results of an optimized method for urine collection and analysis using commercially available diapers and non-target analysis.


Assuntos
Expossoma , Manejo de Espécimes , Humanos , Lactente , Pré-Escolar , Manejo de Espécimes/métodos , Biomarcadores , Monitoramento Biológico , Fezes
7.
J Expo Sci Environ Epidemiol ; 32(3): 481-492, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34079062

RESUMO

BACKGROUND: Soil ingestion is a critical, yet poorly characterized route of exposure to contaminants, particularly for agricultural workers who have frequent, direct contact with soil. OBJECTIVE: This qualitative investigation aims to identify and characterize key considerations for translating agricultural workers' soil ingestion experiences into recommendations to improve traditional exposure science tools for estimating soil ingestion. METHODS: We conducted qualitative in-depth interviews with 16 fruit and vegetable growers in Maryland to characterize their behaviors and concerns regarding soil contact in order to characterize the nature of soil ingestion in the agricultural context. RESULTS: We identified and discussed four emergent themes: (1) variability in growers' descriptions of soil and dust, (2) variability in growers' soil contact, (3) growers' concerns regarding soil contact, (4) growers' practices to modify soil contact. We also identified environmental and behavioral factors and six specific agricultural tasks that may impact soil ingestion rates. SIGNIFICANCE: Our investigation fills an important gap in occupational exposure science methodology by providing four key considerations that should be integrated into indirect measurement tools for estimating soil ingestion rates in the agricultural context. Specifically, a task-based framework may provide a structure for future investigations of soil contact that may be useful in other populations.


Assuntos
Poeira , Fazendeiros , Agricultura , Poeira/análise , Ingestão de Alimentos , Humanos , Solo
8.
Geohealth ; 6(9): e2022GH000615, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176572

RESUMO

Urban soils bear the persistent legacy of leaded gasoline and past industrial practices. Soil safety policies (SSPs) are an important public health tool with the potential to inform, identify, and mitigate potential health risks faced by urban growers, but little is known about how these policies may protect growers from exposures to lead and other soil contaminants. We reviewed and evaluated 43 urban agriculture (UA) policies in 40 US cities pertaining to soil safety. About half of these cities had a least one SSP that offered recommendations or provided services for soil testing. Eight cities had at least one SSP containing a requirement pertaining to any topic (e.g., soil testing, a specific best practice for growing). We found notable inconsistencies across SSPs for "acceptable" levels of lead in soils and the activities and behaviors recommended at each level. We specify research needed to inform revisions to US Environmental Protection Agency guidance for lead in soils specific to UA. We conclude with a series of recommendations to guide the development or revision of SSPs.

9.
Environ Health Perspect ; 129(11): 117004, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34766834

RESUMO

BACKGROUND: Emerging evidence suggests social, health, environmental, and economic benefits of urban agriculture (UA). However, limited work has characterized the risks from metal contaminant exposures faced by urban growers and consumers of urban-grown produce. OBJECTIVES: We aimed to answer community-driven questions about the safety of UA and the consumption of urban-grown produce by measuring concentrations of nine metals in the soil, irrigation water, and urban-grown produce across urban farms and gardens in Baltimore, Maryland. METHODS: We measured concentrations of 6 nonessential [arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), nickel (Ni)] and three essential [copper (Cu), manganese (Mn), zinc (Zn)] metals in soil, irrigation water, and 13 types of urban-grown produce collected from 104 UA sites. We compared measured concentrations to existing public health guidelines and analyzed relationships between urban soil and produce concentrations. In the absence of guidelines for metals in produce, we compared metals concentrations in urban-grown produce with those in produce purchased from farmers markets and grocery stores (both conventionally grown and U.S. Department of Agriculture-certified organic). RESULTS: Mean concentrations of all measured metals in irrigation water were below public health guidelines. Mean concentrations of nonessential metals in growing area soils were below public health guidelines for Ba, Cd, Pb, and Ni and at or below background for As and Cr. Though we observed a few statistically significant differences in concentrations between urban and nonurban produce items for some combinations, no consistent or discernable patterns emerged. DISCUSSION: Screening soils for heavy metals is a critical best practice for urban growers. Given limitations in existing public health guidelines for metals in soil, irrigation water, and produce, additional exposure assessment is necessary to quantify potential human health risks associated with exposure to nonessential metals when engaging in UA and consuming urban-grown produce. Conversely, the potential health benefits of consuming essential metals in urban-grown produce also merit further research. https://doi.org/10.1289/EHP9431.


Assuntos
Metais Pesados , Poluentes do Solo , Baltimore , Estudos Transversais , Monitoramento Ambiental , Fazendas , Jardins , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA