Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 200: 1-10, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822542

RESUMO

Iron dysmetabolism affects a great proportion of heart failure patients, while chronic hypertension is one of the most common risk factors for heart failure and death in industrialized countries. Serum data from reduced ejection fraction heart failure patients show a relative or absolute iron deficiency, whereas cellular myocardial analyses field equivocal data. An observed increase in organellar iron deposits was incriminated to cause reactive oxygen species formation, lipid peroxidation, and cell death. Therefore, we studied the effects of iron chelation on a rat model of cardiac hypertrophy. Suprarenal abdominal aortic constriction was achieved surgically, with a period of nine weeks to accommodate the development of chronic pressure overload. Next, deferiprone (100 mg/kg/day), a lipid-permeable iron chelator, was administered for two weeks. Pressure overload resulted in increased inflammation, fibrotic remodeling, lipid peroxidation, left ventricular hypertrophy and mitochondrial iron derangements. Deferiprone reduced cardiac inflammation, lipid peroxidation, mitochondrial iron levels, and hypertrophy, without affecting circulating iron levels or ejection fraction. In conclusion, metallic molecules may pose ambivalent effects within the cardiovascular system, with beneficial effects of iron redistribution, chiefly in the mitochondria.


Assuntos
Insuficiência Cardíaca Sistólica , Sobrecarga de Ferro , Ratos , Animais , Deferiprona , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/induzido quimicamente , Quelantes de Ferro/farmacologia , Ferro , Inflamação/induzido quimicamente
2.
Diagnostics (Basel) ; 12(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35204578

RESUMO

Hypertrophic Cardiomyopathy (HCM) is the most frequent hereditary cardiovascular disease and the leading cause of sudden cardiac death in young individuals. Advancements in CMR imaging have allowed for earlier identification and more accurate prognosis of HCM. Interventions aimed at slowing or stopping the disease's natural course may be developed in the future. CMR has been validated as a technique with high sensitivity and specificity, very few contraindications, a low risk of side effects, and is overall a good tool to be employed in the management of HCM patients. The goal of this review is to evaluate the magnetic resonance features of HCM, starting with distinct phenotypic variants of the disease and progressing to differential diagnoses of athlete's heart, hypertension, and infiltrative cardiomyopathies. HCM in children has its own section in this review, with possible risk factors that are distinct from those in adults; delayed enhancement in children may play a role in risk stratification in HCM. Finally, a number of teaching points for general cardiologists who recommend CMR for patients with HCM will be presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA