Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 19(5): 517-521, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32015534

RESUMO

Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations1-4. Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N2, through backbonding interactions5-7, and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates8. Here, we report a metal-organic framework featuring exposed vanadium(II) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N2 capacities and selectivities for the removal of N2 from mixtures with CH4, while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents.

2.
Chemistry ; 26(11): 2360-2364, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31950554

RESUMO

While carbene complexes of uranium have been known for over a decade, there are no reported examples of complexes between an actinide and a "heavy carbene." Herein, we report the syntheses and structures of the first uranium-heavy tetrylene complexes: (CpSiMe3 )3 U-Si[PhC(NR)2 ]R' (R=tBu, R'=NMe2 1; R=iPr, R'=PhC(NiPr)2 2). Complex 1 features a kinetically robust uranium-silicon bonding interaction, while the uranium-silicon bond in 2 is easily disrupted thermally or by competing ligands in solution. Calculations reveal polarized σ bonds, but depending on the substituents at silicon a substantial π-bonding interaction is also present. The complexes possess relatively high bond orders which suggests primarily covalent bonding between uranium and silicon. These results comprise a new frontier in actinide-heavy main-group bonding.

3.
Inorg Chem ; 58(24): 16629-16641, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31769982

RESUMO

Addition of the potassium salt of the bulky tetra(isopropyl)cyclopentadienyl (CpiPr4) ligand to UI3(1,4-dioxane)1.5 results in the formation of the bent metallocene uranium(III) complex (CpiPr4)2UI (1), which is then used to obtain the uranium(IV) and uranium(III) dihalides (CpiPr4)2UIVX2 (2-X) and [cation][(CpiPr4)2UIIIX2] (3-X, [cation]+ = [Cp*2Co]+, [Et4N]+, or [Me4N]+) as mononuclear, donor-free complexes, for X- = F-, Cl-, Br-, and I-. Interestingly, reaction of 1 with chloride and cyanide salts of alkali metal ions leads to isolation of the chloride- and cyanide-bridged coordination solids [(CpiPr4)2U(µ-Cl)2Cs]n (4-Cl) and [(CpiPr4)2U(µ-CN)2Na(OEt2)2]n (4-CN). Abstraction of the iodide ligand from 1 further enables isolation of the "base-free" metallocenium cation salt [(CpiPr4)2U][B(C6F5)4] (5) and its DME adduct [(CpiPr4)2U(DME)][B(C6F5)4] (5-DME). Solid-state structures of all of the compounds, determined by X-ray crystallography, facilitate a detailed analysis of the effect of changing oxidation state or halide ligand on the molecular structure. NMR spectroscopy, X-ray crystallography, cyclic voltammetry, and UV-visible spectroscopy studies of 2-X and 3-X further reveal that the difluoride species in both series exhibit properties that differ significantly from trends observed among the other dihalides, such as a substantial negative shift in the potential of the [(CpiPr4)2UX2] uranium(III/IV) redox couple. Magnetic characterization of 1 and 5 reveals that both compounds exhibit slow magnetic relaxation of molecular origin under applied magnetic fields; this process is dominated by a Raman relaxation mechanism.

4.
Angew Chem Int Ed Engl ; 57(49): 16136-16140, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30328669

RESUMO

We report the synthesis, characterization, and electronic structure studies of a series of thorium(IV) and uranium(IV) bis-tetramethyltetraazaannulene complexes. These sandwich complexes show remarkable stability towards air and moisture, even at elevated temperatures. Electrochemical studies show the uranium complex to be stable in three different oxidation states; isolation of the oxidized species reveals a rare case of a non-innocent tetramethyltetraazaannulene (TMTAA) ligand.

5.
Chem Commun (Camb) ; 57(75): 9562-9565, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546232

RESUMO

5f covalency in [U(C7H7)2]- was probed with carbon K-edge X-ray absorption spectroscopy (XAS) and electronic structure theory. The results revealed U 5f orbital participation in δ-bonding in both the ground- and core-excited states; additional 5f ϕ-mixing is observed in the core-excited states. Comparisons with U(C8H8)2 show greater δ-covalency for [U(C7H7)2]-.

6.
Chem Commun (Camb) ; 57(96): 13028, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34816840

RESUMO

Correction for 'Enhanced 5f-δ bonding in [U(C7H7)2]-: C K-edge XAS, magnetism, and ab initio calculations' by Yusen Qiao et al., Chem. Commun., 2021, 57, 9562-9565, DOI: 10.1039/D1CC03414F.

7.
Dalton Trans ; 46(35): 11615-11625, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28831470

RESUMO

We report the coordination chemistry of the tripodal tris[2-amido(2-pyridyl)ethyl]amine ligand, L, with thorium(iv) and uranium(iv). Using a salt-metathesis strategy from the potassium salt of this ligand, K3L, new actinide complexes were isolated, namely the dimeric thorium complex [ThCl(L)]2 (1) and the monomeric uranium complex UI(THF)(L) (2); under different crystallisation conditions, the dimeric uranium complex is also isolated, [UI(L)]2 (2-dimer). With the aim of studying electronic phenomena such as magnetic exchange between two actinide ions, we have synthesised the first examples of dinuclear, quinoid-bridged actinide complexes from dianionic 2,5-bis[2,6-(diisopropyl)anilide]-1,4-benzoquinone (QDipp) and 2,5-bis[2-(methoxy)anilide]-1,4-benzoquinone (QOMe) ligands. The resulting complexes are [Th(L)]2QDipp (3), [Th(THF)(L)]2QOMe (5) and [U(L)]2QOMe (6). The targeted [U(L)]2QDipp complex (4) could not be isolated. All isolated complexes have been characterised by spectroscopic methods and X-ray crystallography. The uranium(iv) complexes 2-dimer and 6 have been studied by SQUID magnetometry but indicate that there is negligible magnetic exchange between the two uranium(iv) ions. The reduced form of 6, [K(18-c-6)][6-] is unstable and highly sensitive, but X-ray crystallography indicates that it is a novel UIVUIV complex bridged by a quinoid-radical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA