Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunother Cancer ; 6(1): 41, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843822

RESUMO

BACKGROUND: Adoptive cell transfer (ACT) is a promising cancer immunotherapeutic strategy that remains ineffective for a large subset of patients. ACT with memory CD8+ T cells (Tmem) has been shown to have superior efficacy compared to traditional ACT with effector CD8+ T cells (Teff). Teff and Tmem have complementary physiological advantages for immunotherapy, but previous publications have not examined ACT using a combination of Teff and Tmem. METHODS: Splenocytes harvested from Ly5.1+/C57BL/6 mice during and after infection with lymphocytic choriomeningitis virus (LCMV) were used to generate bona fide effector and memory CD8+ T cells specific for the LCMV epitope peptide GP33. Congenic Ly5.2+/C57BL/6 mice were inoculated with B16F10 melanoma cells transfected to express very low levels of GP33, then treated with ACT 7 days later with GP33-specific Teff, Tmem, or a combination of Teff + Tmem. RESULTS: Inhibition of melanoma growth was strongest in mice receiving combinatorial ACT. Although combinatorial ACT and memory ACT resulted in maximal intratumoral infiltration of CD8+ T cells, combinatorial ACT induced stronger infiltration of endogenous CD8+ T cells than Tmem ACT and a stronger systemic T cell responsiveness to tumor antigen. In vitro assays revealed rapid but transient melanoma inhibition with Teff and gradual but prolonged melanoma inhibition with Tmem; the addition of Tmem enhanced the ability of Teff to inhibit melanoma in a manner that could be reproduced using conditioned media from activated Tmem and blocked by the addition of anti-IL-2 blocking antibody. CONCLUSIONS: These findings suggest that a novel combinatorial approach that takes advantage of the unique and complementary strengths of tumor-specific Teff and Tmem may be a way to optimize the efficacy of adoptive immunotherapy.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos
2.
Clin Cancer Res ; 23(2): 514-522, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034904

RESUMO

INTRODUCTION: PARP inhibitors have shown promising results in early studies for treatment of breast cancer susceptibility gene (BRCA)-deficient breast cancers; however, resistance ultimately develops. Furthermore, the benefit of PARP inhibitors (PARPi) in triple-negative breast cancers (TNBC) remains unknown. Recent evidence indicates that in TNBCs, cells that display "cancer stem cell" properties are resistant to conventional treatments, mediate tumor metastasis, and contribute to recurrence. The sensitivity of breast cancer stem cells (CSC) to PARPi is unknown. EXPERIMENTAL DESIGN: We determined the sensitivity of breast CSCs to PARP inhibition in BRCA1-mutant and -wild-type TNBC cell lines and tumor xenografts. We also investigated the role of RAD51 in mediating CSC resistance to PARPi in these in vitro and in vivo models. RESULTS: We demonstrated that the CSCs in BRCA1-mutant TNBCs were resistant to PARP inhibition, and that these cells had both elevated RAD51 protein levels and activity. Downregulation of RAD51 by shRNA sensitized CSCs to PARP inhibition and reduced tumor growth. BRCA1-wild-type cells were relatively resistant to PARP inhibition alone, but reduction of RAD51 sensitized both CSC and bulk cells in these tumors to PARPi treatment. CONCLUSIONS: Our data suggest that in both BRCA1-mutant and BRCA1-wild-type TNBCs, CSCs are relatively resistant to PARP inhibition. This resistance is mediated by RAD51, suggesting that strategies aimed at targeting RAD51 may increase the therapeutic efficacy of PARPi. Clin Cancer Res; 23(2); 514-22. ©2016 AACR.


Assuntos
Proteína BRCA1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Rad51 Recombinase/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Proteína BRCA2/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Res ; 73(5): 1635-46, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23442322

RESUMO

Although current breast cancer treatment guidelines limit the use of HER2-blocking agents to tumors with HER2 gene amplification, recent retrospective analyses suggest that a wider group of patients may benefit from this therapy. Using breast cancer cell lines, mouse xenograft models and matched human primary and metastatic tissues, we show that HER2 is selectively expressed in and regulates self-renewal of the cancer stem cell (CSC) population in estrogen receptor-positive (ER(+)), HER2(-) luminal breast cancers. Although trastuzumab had no effects on the growth of established luminal breast cancer mouse xenografts, administration after tumor inoculation blocked subsequent tumor growth. HER2 expression is increased in luminal tumors grown in mouse bone xenografts, as well as in bone metastases from patients with breast cancer as compared with matched primary tumors. Furthermore, this increase in HER2 protein expression was not due to gene amplification but rather was mediated by receptor activator of NF-κB (RANK)-ligand in the bone microenvironment. These studies suggest that the clinical efficacy of adjuvant trastuzumab may relate to the ability of this agent to target the CSC population in a process that does not require HER2 gene amplification. Furthermore, these studies support a CSC model in which maximal clinical benefit is achieved when CSC targeting agents are administered in the adjuvant setting. Cancer Res; 73(5); 1635-46. ©2012 AACR.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/genética , Genes erbB-2 , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Amplificação de Genes , Humanos , Camundongos , Transplante de Neoplasias , Receptores de Estrogênio/metabolismo , Transplante Heterólogo , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA