Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(15): 154801, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077438

RESUMO

A simple method for generating single-spike hard x-ray pulses in free-electron lasers (FELs) has been developed at the Linac Coherent Light Source (LCLS). This is realized by nonlinear bunch compression using 20-pC bunch charge, demonstrated in the hard x-ray regime at 5.6 and 9 keV, respectively. Measurements show about half of the FEL shots containing a single-spike spectrum. At 5.6-keV photon energy, the single-spike shots have a mean pulse energy of about 10 µJ with 70% intensity fluctuation and the pulse full width at half maximum is evaluated to be at 200-as level.

2.
Phys Rev Lett ; 116(25): 254801, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391728

RESUMO

In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

3.
Phys Rev Lett ; 113(25): 254801, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554887

RESUMO

A scheme for generating two simultaneous hard-x-ray free-electron laser pulses with a controllable difference in photon energy is described and then demonstrated using the self-seeding setup at the Linac Coherent Light Source (LCLS). The scheme takes advantage of the existing LCLS equipment, which allows two independent rotations of the self-seeding diamond crystal. The two degrees of freedom are used to select two nearby crystal reflections, causing two wavelengths to be present in the forward transmitted seeding x-ray pulse. The free-electron laser system must support amplification at both desired wavelengths.

4.
Phys Rev Lett ; 110(13): 134801, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581326

RESUMO

With an eye toward extending optical wave-mixing techniques to the x-ray regime, we present the first experimental demonstration of a two-color x-ray free-electron laser at the Linac Coherent Light Source. We combine the emittance-spoiler technique with a magnetic chicane in the undulator section to control the pulse duration and relative delay between two intense x-ray pulses and we use differently tuned canted pole undulators such that the two pulses have different wavelengths as well. Two schemes are shown to produce two-color soft x-ray pulses with a wavelength separation up to ∼1.9% and a controllable relative delay up to 40 fs.

5.
Phys Rev Lett ; 111(13): 134801, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116783

RESUMO

We show that the spectral properties of a self-amplified spontaneous emission x-ray free-electron laser can be controlled by modulating the gain in magnetic undulators, thus producing one or several spectral lines within a single few femtosecond pulse. By varying the magnetic field along the undulator and the electron beam transport line, the system we demonstrate can tailor the x-ray spectrum to optimally meet numerous experimental requirements for multicolor operation.

6.
Nat Commun ; 8: 15461, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580940

RESUMO

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

7.
Nat Commun ; 7: 11652, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27212390

RESUMO

New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.

8.
Rev Sci Instrum ; 87(8): 083113, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587106

RESUMO

A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

9.
Sci Rep ; 5: 13531, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314764

RESUMO

Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We investigate the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

10.
Nat Commun ; 6: 6369, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744344

RESUMO

The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA