Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 122(20): 3500-10, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24002446

RESUMO

CD37 has gathered renewed interest as a therapeutic target in non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL); however, CD37-directed antibody-drug conjugates (ADCs) have not been explored. Here, we identified a novel anti-CD37 antibody, K7153A, with potent in vitro activity against B-cell lines through multiple mechanisms including apoptosis induction, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity. The antibody was conjugated to the maytansinoid, DM1, a potent antimicrotubule agent, via the thioether linker, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), and the resulting ADC, IMGN529, retained the intrinsic antibody activities and showed enhanced cytotoxic activity from targeted payload delivery. In lymphoma cell lines, IMGN529 induced G2/M cell cycle arrest after internalization and lysosomal processing to lysine-N(ε)-SMCC-DM1 as the sole intracellular maytansinoid metabolite. IMGN529 was highly active against subcutaneous B-cell tumor xenografts in severe combined immunodeficient mice with comparable or better activity than rituximab, a combination of cyclophosphamide, vincristine, and prednisone, or bendamustine. In human blood cells, CD37 is expressed in B cells at similar levels as CD20, and IMGN529 resulted in potent and specific depletion of normal and CLL B cells. These results support evaluation of the CD37-targeted ADC, IMGN529, in clinical trials in patients with B-cell malignancies including NHL and CLL.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Murinos/uso terapêutico , Antígenos de Neoplasias/imunologia , Linfócitos B/efeitos dos fármacos , Imunotoxinas/uso terapêutico , Maitansina/análogos & derivados , Terapia de Alvo Molecular , Tetraspaninas/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linfócitos B/patologia , Cloridrato de Bendamustina , Linhagem Celular Tumoral/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Citotoxicidade Imunológica/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Maitansina/administração & dosagem , Maitansina/farmacologia , Maitansina/uso terapêutico , Camundongos , Camundongos SCID , Compostos de Mostarda Nitrogenada/uso terapêutico , Prednisona/administração & dosagem , Rituximab , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Pharm ; 12(6): 1703-16, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25856201

RESUMO

Coltuximab ravtansine (SAR3419) is an antibody-drug conjugate (ADC) targeting CD19 created by conjugating a derivative of the potent microtubule-acting cytotoxic agent, maytansine, to a version of the anti-CD19 antibody, anti-B4, that was humanized as an IgG1 by variable domain resurfacing. Four different linker-maytansinoid constructs were synthesized (average ∼3.5 maytansinoids/antibody for each) to evaluate the impact of linker-payload design on the activity of the maytansinoid-ADCs targeting CD19. The ADC composed of DM4 (N(2')-deacetyl-N(2')-[4-mercapto-4-methyl-1-oxopentyl]maytansine) conjugated to antibody via the N-succinimidyl-4-(2-pyridyldithio)butyrate (SPDB) linker was selected for development as SAR3419. A molar ratio for DM4/antibody of between 3 and 5 was selected for the final design of SAR3419. Evaluation of SAR3419 in Ramos tumor xenograft models showed that the minimal effective single dose was about 50 µg/kg conjugated DM4 (∼2.5 mg/kg conjugated antibody), while twice this dose gave complete regressions in 100% of the mice. SAR3419 arrests cells in the G2/M phase of the cell cycle, ultimately leading to apoptosis after about 24 h. The results of in vitro and in vivo studies with SAR3419 made with DM4 that was [(3)H]-labeled at the C20 methoxy group of the maytansinoid suggest a mechanism of internalization and intracellular trafficking of SAR3419, ultimately to lysosomes, in which the antibody is fully degraded, releasing lysine-N(ε)-SPDB-DM4 as the initial metabolite. Subsequent intracellular reduction of the disulfide bond between linker and DM4 generates the free thiol species, which is then converted to S-methyl DM4 by cellular methyl transferase activity. We provide evidence to suggest that generation of S-methyl DM4 in tumor cells may contribute to in vivo tumor eradication via bystander killing of neighboring tumor cells. Furthermore, we show that S-methyl DM4 is converted to the sulfoxide and sulfone derivatives in the liver, suggesting that hepatic catabolism of the payload to less cytotoxic maytansinoid species contributes to the overall therapeutic window of SAR3419. This compound is currently in phase II clinical evaluation for the treatment of diffuse large B cell lymphoma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Maitansina/análogos & derivados , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Fase G2/efeitos dos fármacos , Humanos , Fígado/metabolismo , Linfoma/tratamento farmacológico , Maitansina/química , Maitansina/farmacocinética , Maitansina/uso terapêutico , Camundongos , Camundongos SCID , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioconjug Chem ; 22(4): 717-27, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21425776

RESUMO

In this report, we describe the synthesis of a panel of disulfide-linked huC242 (anti-CanAg) antibody maytansinoid conjugates (AMCs), which have varying levels of steric hindrance around the disulfide bond, in order to investigate the relationship between stability to reduction of the disulfide linker and antitumor activity of the conjugate in vivo. The conjugates were first tested for stability to reduction by dithiothreitol in vitro and for plasma stability in CD1 mice. It was found that the conjugates having the more sterically hindered disulfide linkages were more stable to reductive cleavage of the maytansinoid in both settings. When the panel of conjugates was tested for in vivo efficacy in two human colon cancer xenograft models in SCID mice, it was found that the conjugate with intermediate disulfide bond stability having two methyl groups on the maytansinoid side of the disulfide bond and no methyl groups on the linker side of the disulfide bond (huC242-SPDB-DM4) displayed the best efficacy. The ranking of in vivo efficacies of the conjugates was not predicted by their in vitro potencies, since all conjugates were highly active in vitro, including a huC242-SMCC-DM1 conjugate with a noncleavable linkage which showed only marginal activity in vivo. These data suggest that factors in addition to intrinsic conjugate potency and conjugate half-life in plasma influence the magnitude of antitumor activity observed for an AMC in vivo. We provide evidence that bystander killing of neighboring nontargeted tumor cells by diffusible cytotoxic metabolites produced from target cell processing of disulfide-linked antibody-maytansinoid conjugates may be one additional factor contributing to the activity of these conjugates in vivo.


Assuntos
Anticorpos/química , Antineoplásicos/química , Carbono/química , Neoplasias do Colo/tratamento farmacológico , Dissulfetos/química , Maitansina/química , Animais , Anticorpos/sangue , Anticorpos/farmacologia , Antineoplásicos/sangue , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Dissulfetos/sangue , Dissulfetos/farmacologia , Humanos , Maitansina/sangue , Maitansina/farmacologia , Camundongos , Camundongos Endogâmicos , Camundongos SCID , Conformação Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 13(12): 3689-95, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17575234

RESUMO

PURPOSE: Targeted delivery of cytotoxic agents to solid tumors through cell surface antigens can potentially reduce systemic toxicity and increase the efficacy of the targeted compounds. The purpose of this study was to show the feasibility of treating solid tumors by targeting alpha(v) integrins with antibody-maytansinoid conjugates and to test the relative in vivo activities of several linker-maytansinoid chemistries. EXPERIMENTAL DESIGN: CNTO 364, CNTO 365, and CNTO 366 are targeted cytotoxic agents created by conjugating the CNTO 95 anti-alpha(v) integrin antibody with three distinct maytansinoid-linker structures. These structures were designed to have varying degrees of chemical substitution surrounding the disulfide bond linking the cytotoxic agent to the antibody. A model conjugate was shown to be specifically cytotoxic in vitro and highly active against established human tumor xenografts in immunocompromised rats. The in vivo antitumor activities of CNTO 364, CNTO 365, and CNTO 366 were compared in rat xenograft models. RESULTS: CNTO 365, with a linker chemistry of expected intermediate stability, was shown to be substantially more active than the other two conjugates with lesser or greater substitution around the disulfide linkage. CONCLUSION: CNTO 95-maytansinoid immunoconjugates are potent antitumor agents against alpha(v) integrin-expressing human carcinomas. These studies show for the first time the feasibility of targeting alpha(v) integrins on solid tumors with tumor-activated prodrugs. The DM4 linker-maytansinoid configuration of CNTO 365 was substantially more active in the models tested here when compared with alternative configurations with greater or lesser chemical substitution surrounding the linker.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Imunoconjugados/administração & dosagem , Integrina alfa5/imunologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Especificidade de Anticorpos , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Citometria de Fluxo , Humanos , Imunoconjugados/química , Imunoterapia , Camundongos , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Res ; 66(8): 4426-33, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16618769

RESUMO

Antibody-drug conjugates are targeted anticancer agents consisting of a cytotoxic drug covalently linked to a monoclonal antibody for tumor antigen-specific activity. Once bound to the target cell-surface antigen, the conjugate must be processed to release an active form of the drug, which can reach its intracellular target. Here, we used both biological and biochemical methods to better define this process for antibody-maytansinoid conjugates. In particular, we examined the metabolic fate in cells of huC242-maytansinoid conjugates containing either a disulfide linker (huC242-SPDB-DM4) or a thioether linker (huC242-SMCC-DM1). Using cell cycle analysis combined with lysosomal inhibitors, we showed that lysosomal processing is required for the activity of antibody-maytansinoid conjugates, irrespective of the linker. We also identified and characterized the released maytansinoid molecules from these conjugates, and measured their rate of release compared with the kinetics of cell cycle arrest. Both conjugates are efficiently degraded in lysosomes to yield metabolites consisting of the intact maytansinoid drug and linker attached to lysine. The lysine adduct is the sole metabolite from the thioether-linked conjugate. However, the lysine metabolite generated from the disulfide-linked conjugate is reduced and S-methylated to yield the lipophilic and potently cytotoxic metabolite, S-methyl-DM4. These findings provide insight into the mechanism of action of antibody-maytansinoid conjugates in general, and more specifically, identify a biochemical mechanism that may account for the significantly enhanced antitumor efficacy observed with disulfide-linked conjugates.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Imunotoxinas/farmacocinética , Maitansina/análogos & derivados , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacocinética , Reagentes de Ligações Cruzadas/farmacologia , Dissulfetos/química , Dissulfetos/farmacocinética , Dissulfetos/farmacologia , Células HT29 , Humanos , Imunotoxinas/química , Imunotoxinas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Maitansina/química , Maitansina/farmacocinética , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Invest Ophthalmol Vis Sci ; 48(2): 808-14, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17251481

RESUMO

PURPOSE: Sustained-release intravitreal drug implants for posterior segment diseases are associated with significant complications. As an alternative, subconjunctival infusions of drug to the episclera of the back of the eye have been performed, but results in clinical trials for macular diseases showed mixed RESULTS: To improve understanding of transscleral drug delivery to the posterior segment, the distribution and clearance of gadolinium-diethylene-triamino-penta-acetic acid (Gd-DTPA) infused in the subconjunctival or intrascleral space was investigated by means of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS: In anesthetized rabbits, catheters were placed anteriorly in the subconjunctival or intrascleral space and infused with Gd-DTPA at 1 and 10 muL/min. Distribution and clearance of Gd-DTPA were measured using DCE-MRI. Histologic examination was performed to assess ocular toxicity of the delivery system. results. Subconjunctival infusions failed to produce detectable levels of Gd-DTPA in the back of the eye. In contrast, intrascleral infusions expanded the suprachoroidal layer and delivered Gd-DTPA to the posterior segment. Suprachoroidal clearance of Gd-DTPA followed first-order kinetics with an average half-life of 5.4 and 11.8 minutes after intrascleral infusions at 1 and 10 muL/min, respectively. Histologic examination demonstrated expansion of the tissues in the suprachoroidal space that normalized after infusion termination. CONCLUSIONS: An intrascleral infusion was successful in transporting Gd-DTPA to the posterior segment from an anterior infusion site with limited anterior segment exposure. The suprachoroidal space appears to be an expandible conduit for drug transport to the posterior segment. Further studies are indicated to explore the feasibility of clinical applications.


Assuntos
Corioide/metabolismo , Túnica Conjuntiva/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Sistemas de Liberação de Medicamentos , Gadolínio DTPA/administração & dosagem , Retina/metabolismo , Esclera/efeitos dos fármacos , Animais , Meios de Contraste/farmacocinética , Feminino , Gadolínio DTPA/farmacocinética , Infusões Parenterais , Imageamento por Ressonância Magnética/métodos , Coelhos
7.
Ophthalmic Res ; 39(5): 244-54, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17851264

RESUMO

Transscleral delivery has emerged as an attractive method for treating retinal disorders because it offers localized delivery of drugs as a less invasive method compared to intravitreal administration. Numerous novel transscleral drug delivery systems ranging from microparticles to implants have been reported. However, transscleral delivery is currently not as clinically effective as intravitreal delivery in the treatment of retinal diseases. Transscleral drug delivery systems require drugs to permeate through several layers of ocular tissue (sclera, Bruch's membrane-choroid, retinal pigment epithelium) to reach the neuroretina. As a result, a steep drug concentration gradient from the sclera to the retina is established, and very low concentrations of drug are detected in the retina. This steep gradient is created by the barriers to transport that hinder drug molecules from successfully reaching the retina. A review of the literature reveals 3 types of barriers hindering transscleral drug delivery: static, dynamic and metabolic. While static barriers have been examined in detail, the literature on dynamic and metabolic barriers is lacking. These barriers must be investigated further to gain a more complete understanding of the transport barriers involved in transscleral drug delivery.


Assuntos
Preparações Farmacêuticas/administração & dosagem , Farmacocinética , Doenças Retinianas/tratamento farmacológico , Esclera/metabolismo , Transporte Biológico , Humanos
8.
J Med Chem ; 49(14): 4392-408, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16821799

RESUMO

Maytansine, a highly cytotoxic natural product, failed as an anticancer agent in human clinical trials because of unacceptable systemic toxicity. The potent cell killing ability of maytansine can be used in a targeted delivery approach for the selective destruction of cancer cells. A series of new maytansinoids, bearing a disulfide or thiol substituent were synthesized. The chain length of the ester side chain and the degree of steric hindrance on the carbon atom bearing the thiol substituent were varied. Several of these maytansinoids were found to be even more potent in vitro than maytansine. The targeted delivery of these maytansinoids, using monoclonal antibodies, resulted in a high, specific killing of the targeted cells in vitro and remarkable antitumor activity in vivo.


Assuntos
Antineoplásicos/síntese química , Maitansina/análogos & derivados , Maitansina/síntese química , Animais , Anticorpos Monoclonais/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dissulfetos/síntese química , Dissulfetos/química , Dissulfetos/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Maitansina/química , Maitansina/farmacologia , Camundongos , Camundongos SCID , Transplante de Neoplasias , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Transplante Heterólogo
9.
Cancer Res ; 62(9): 2546-53, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11980648

RESUMO

We conducted an expression analysis of prostate stem cell antigen (PSCA)in normal urogenital tissues, benign prostatic hyperplasia (n = 21), prostatic intraepithelial neoplasia (n = 33), and primary (n = 137) and metastatic (n = 42) prostate adenocarcinoma, using isotopic in situ hybridization on tissue microarrays. In normal prostate, we observe PSCA expression in the terminally differentiated, secretory epithelium; strong expression was also seen in normal urothelium. Forty-eight percent of primary and 64% of metastatic prostatic adenocarcinomas expressed PSCA RNA. Our studies did not confirm a positive correlation between level of PSCA RNA expression and high Gleason grade. We characterized monoclonal anti-PSCA antibodies that recognize PSCA expressed on the surface of live cells, are efficiently internalized after antigen recognition, and kill tumor cells in vitro in an antigen-specific fashion upon conjugation with maytansinoid. Unconjugated anti-PSCA antibodies demonstrated efficacy against PSCA-positive tumors by delaying progressive tumor growth in vivo. Maytansinoid-conjugated antibodies caused complete regression of established tumors in a large proportion of animals. Our results strongly suggest that maytansinoid-conjugated anti-PSCA monoclonal antibodies should be evaluated as a therapeutic modality for patients with advanced prostate cancer.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Anticorpos Monoclonais/farmacologia , Glicoproteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Adenocarcinoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Antígenos de Neoplasias , Feminino , Proteínas Ligadas por GPI , Humanos , Imunização Passiva/métodos , Imunotoxinas/farmacocinética , Imunotoxinas/farmacologia , Hibridização In Situ , Masculino , Maitansina/farmacocinética , Maitansina/farmacologia , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata/metabolismo
10.
Am J Blood Res ; 6(1): 6-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335686

RESUMO

Environmental-mediated drug-resistance (EM-DR) presents a major challenge for therapeutic development. Tissue microenvironment in the form of extracellular matrix, soluble factors, and stroma contribute to EM-DR. In multiple myeloma (MM), drug-resistance has hindered treatment success with 5-year survival rates remaining <50%. Here we evaluated IMGN901, a maytansinoid immunoconjugate, for its ability to overcome EM-DR alone or in combination with lenalidomide or dexamethasone. We show that while adhesion of MM cells to the extracellular matrix reduces potency of IMGN901, it remains cytotoxic with an average LC50=43 nM. However, only a combination of IMGN901, lenalidomide, and dexamethasone was able to overcome drug-resistance arising from the direct contact between MM and stromal cells. We demonstrate that multi-drug resistance protein-1 (MDR-1) was upregulated in MM cells grown in contact with stroma, likely responsible for the observed resistance. This study emphasizes the importance of incorporating the elements of tumor microenvironment during preclinical testing of novel therapeutics.

11.
Invest Ophthalmol Vis Sci ; 46(2): 655-62, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15671296

RESUMO

PURPOSE: To develop a local drug delivery system that provides therapeutic cyclosporine levels to treat lacrimal gland graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. METHODS: Episcleral cyclosporine implants were manufactured with a silicone-based matrix design, and in vitro release rates were determined. Preclinical evaluation included toxicology (clinical examination, serial electroretinography, and histopathology) in normal rabbits and dogs, pharmacokinetics in normal rabbits, and pharmacodynamics in a canine model of aqueous tear deficiency and keratoconjunctivitis sicca. RESULTS: The cyclosporine implants showed sustained release of drug over time with in vitro assays. Histopathology showed normal ocular tissues in both dogs and rabbits 6 months after implantation. The cyclosporine implant produced lacrimal gland drug levels 1 to 2 log units higher than those reported with a variety of topical cyclosporine formulations and oral administration. The cyclosporine implant was effective in a canine model of keratoconjunctivitis sicca, with all animals able to discontinue topical cyclosporine and maintain normal Schirmer scores over a 6-month follow-up. CONCLUSIONS: This preclinical evaluation showed that the episcleral cyclosporine implant was safe, delivered potentially therapeutic cyclosporine levels to the lacrimal gland, and showed efficacy in a clinically relevant model of keratoconjunctivitis sicca. The episcleral cyclosporine implant shows promise in reducing the morbidity associated with lacrimal gland graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. In addition, continuous release of cyclosporine in the subconjunctival space with the episcleral implant was an effective means of delivering drug to the ocular surface and may have potential in treating other ocular inflammatory diseases.


Assuntos
Ciclosporina/farmacocinética , Olho/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Imunossupressores/farmacocinética , Esclera/metabolismo , Animais , Disponibilidade Biológica , Ciclosporina/farmacologia , Ciclosporina/toxicidade , Cães , Avaliação Pré-Clínica de Medicamentos , Implantes de Medicamento , Eletrorretinografia/efeitos dos fármacos , Olho/patologia , Feminino , Doença Enxerto-Hospedeiro/patologia , Imunossupressores/farmacologia , Imunossupressores/toxicidade , Ceratoconjuntivite/tratamento farmacológico , Ceratoconjuntivite/patologia , Masculino , Coelhos , Retina/efeitos dos fármacos , Segurança , Esclera/efeitos dos fármacos , Esclera/patologia
12.
J Control Release ; 105(3): 279-95, 2005 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15896868

RESUMO

A 3-dimensional finite element model was developed to simulate pharmacokinetics in the eye following drug administration by intravitreal injection and implant for the treatment of retinal disease. The contributions of (1) convection to the transport of drug through the vitreous and aqueous humor and (2) diffusion of drug in the vitreous were varied to study the drug elimination from a normal and diseased eye. Drug distribution achieved by intravitreal injection was compared to that for the same dose released at a constant rate over 15 h from an implant. The model was constructed for a rabbit eye and validated with experimental data for intravitreal injection of fluorescein. The implant reduced peak concentration by 43% and increased residence time by 71% for the baseline (6x10(-6) cm2/s drug diffusivity in vitreous and 0.1 microL/min vitreous outflow), when compared with that of intravitreal injection. Therefore, the implant could be beneficial in reducing the peak concentration and sustaining release of the drug for a longer duration. Convection has a relatively small influence in the normal eye for high diffusivity drugs (1x10(-5) cm2/s), but could have a significant effect for low diffusivity drugs (1x10(-7) cm2/s) in pathophysiologically elevated fluid outflow across the retina. By interpolating the results of this benchmark study, one could estimate the distributions for drugs of different molecular weight, and assess the effect of variable vitreous outflows associated with different pathophysiological conditions.


Assuntos
Preparações Farmacêuticas/metabolismo , Corpo Vítreo , Algoritmos , Animais , Segmento Anterior do Olho/metabolismo , Humor Aquoso/metabolismo , Fenômenos Químicos , Físico-Química , Preparações de Ação Retardada , Implantes de Medicamento , Análise de Elementos Finitos , Fluoresceína/farmacocinética , Meia-Vida , Técnicas In Vitro , Injeções , Cinética , Modelos Estatísticos , Permeabilidade , Preparações Farmacêuticas/administração & dosagem , Coelhos , Retina/metabolismo
13.
Mol Cancer Ther ; 14(7): 1605-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25904506

RESUMO

A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα). Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules. From screening a large panel of anti-FRα monoclonal antibodies, we selected the humanized antibody M9346A as the best antibody for targeted delivery of a maytansinoid payload into FRα-positive cells. We compared M9346A conjugates with various linker/maytansinoid combinations, and found that a conjugate, now denoted as IMGN853, with the N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate (sulfo-SPDB) linker and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) exhibited the most potent antitumor activity in several FRα-expressing xenograft tumor models. The level of expression of FRα on the surface of cells was a major determinant in the sensitivity of tumor cells to the cytotoxic effect of the conjugate. Efficacy studies of IMGN853 in xenografts of ovarian cancer and non-small cell lung cancer cell lines and of a patient tumor-derived xenograft model demonstrated that the ADC was highly active against tumors that expressed FRα at levels similar to those found on a large fraction of ovarian and non-small cell lung cancer patient tumors, as assessed by immunohistochemistry. IMGN853 displayed cytotoxic activity against FRα-negative cells situated near FRα-positive cells (bystander cytotoxic activity), indicating its ability to eradicate tumors with heterogeneous expression of FRα. Together, these findings support the clinical development of IMGN853 as a novel targeted therapy for patients with FRα-expressing tumors.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor 1 de Folato/antagonistas & inibidores , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Efeito Espectador/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Receptor 1 de Folato/imunologia , Humanos , Imunoconjugados/imunologia , Maitansina/análogos & derivados , Maitansina/imunologia , Maitansina/farmacologia , Camundongos Nus , Camundongos SCID , Terapia de Alvo Molecular/métodos , Neoplasias/imunologia , Neoplasias/metabolismo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
14.
Invest Ophthalmol Vis Sci ; 45(8): 2722-31, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277497

RESUMO

PURPOSE: The ability of an episcleral implant at the equator of the eye to deliver drugs to the posterior segment was evaluated, using a sustained-release implant containing gadolinium-DTPA (Gd-DTPA). The movement of this drug surrogate was assessed with magnetic resonance imaging (MRI) in the rabbit eye. The results were compared with a similar implant placed in the vitreous cavity through a scleral incision at the equator. METHODS: Polymer-based implants releasing Gd-DTPA were manufactured and placed in the subconjunctival space on the episclera or in the vitreous cavity in live rabbit eyes (in vivo) and in freshly enucleated eyes (ex vivo). Release rates of implants in vitro were also determined. Dynamic three-dimensional MRI was performed using a 4.7-Tesla MRI system for 8 hours. MR images were developed and analyzed on computer. RESULTS: Episcleral implants in vivo delivered a mean total of 2.7 microg Gd-DTPA into the vitreous, representing only 0.12% of the total amount of compound released from the implant in vitro. No Gd-DTPA was detected in the posterior segment of the eye. Ex vivo, the Gd-DTPA concentration in the vitreous was 30 times higher. In vivo eyes with intravitreal implants placed at the equator delivered Gd-DTPA throughout the vitreous cavity and posterior segment. Compartmental analysis of the ocular drug distribution from an episcleral implant showed that the elimination rate constant of Gd-DTPA from the subconjunctival space into the episcleral veins and conjunctival lymphatics was 3-log units higher than the transport rate constant for Gd-DTPA movement into the vitreous. CONCLUSIONS: In vivo, episcleral implants at the equator of the eye did not deliver a significant amount of Gd-DTPA into the vitreous, and no compound was identified in the posterior segment. A 30-fold increase in vitreous Gd-DTPA concentration occurred in the enucleated eyes, suggesting that there are significant barriers to the movement of drugs from the episcleral space into the vitreous in vivo. Dynamic three-dimensional MRI using Gd-DTPA, and possibly other contrast agents, may be useful in understanding the spatial relationships of ocular drug distribution and clearance mechanisms in the eye.


Assuntos
Meios de Contraste/farmacocinética , Sistemas de Liberação de Medicamentos , Gadolínio DTPA/farmacocinética , Imageamento por Ressonância Magnética/métodos , Animais , Humor Aquoso/metabolismo , Meios de Contraste/administração & dosagem , Avaliação de Medicamentos , Implantes de Medicamento , Gadolínio DTPA/administração & dosagem , Imageamento Tridimensional , Coelhos , Retina/metabolismo , Esclera/efeitos dos fármacos , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/metabolismo
15.
MAbs ; 6(2): 556-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492307

RESUMO

Lorvotuzumab mertansine (LM) is an antibody-drug conjugate composed of a humanized anti-CD56 antibody, lorvotuzumab, linked via a cleavable disulfide linker to the tubulin-binding maytansinoid DM1. CD56 is expressed on most small cell lung cancers (SCLC), providing a promising therapeutic target for treatment of this aggressive cancer, which has a poor five-year survival rate of only 5-10%. We performed immunohistochemical staining on SCLC tumor microarrays, which confirmed that CD56 is expressed at high levels on most (~74%) SCLC tumors. Conjugation of lorvotuzumab with DM1 did not alter its specific binding to cells and LM demonstrated potent target-dependent cytotoxicity against CD56-positive SCLC cells in vitro. The anti-tumor activity of LM was evaluated against SCLC xenograft models in mice, both as monotherapy and in combination with platinum/etoposide and paclitaxel/carboplatin. Dose-dependent and antigen-specific anti-tumor activity of LM monotherapy was demonstrated at doses as low as 3 mg/kg. LM was highly active in combination with standard-of-care platinum/etoposide therapies, even in relatively resistant xenograft models. LM demonstrated outstanding anti-tumor activity in combination with carboplatin/etoposide, with superior activity over chemotherapy alone when LM was used in combinations at significantly reduced doses (6-fold below the minimally efficacious dose for LM monotherapy). The combination of LM with carboplatin/paclitaxel was also highly active. This study provides the rationale for clinical evaluation of LM as a promising novel targeted therapy for SCLC, both as monotherapy and in combination with chemotherapy.


Assuntos
Anticorpos Monoclonais/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno CD56/imunologia , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Maitansina/análogos & derivados , Maitansina/metabolismo , Carcinoma de Pequenas Células do Pulmão/terapia , Moduladores de Tubulina/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Maitansina/química , Maitansina/imunologia , Camundongos , Camundongos SCID , Carcinoma de Pequenas Células do Pulmão/imunologia , Moduladores de Tubulina/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 17(20): 6448-58, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22003072

RESUMO

SAR3419 is a novel anti-CD19 humanized monoclonal antibody conjugated to a maytansine derivate through a cleavable linker for the treatment of B-cell malignancies. SAR3419 combines the strengths of a high-potency tubulin inhibitor and the exquisite B-cell selectivity of an anti-CD19 antibody. The internalization and processing of SAR3419, following its binding at the surface of CD19-positive human lymphoma cell lines and xenograft models, release active metabolites that trigger cell-cycle arrest and apoptosis, leading to cell death and tumor regression. SAR3419 has also been shown to be active in different lymphoma xenograft models, including aggressive diffuse large B-cell lymphoma, resulting in complete regressions and tumor-free survival. In these models, the activity of SAR3419 compared favorably with rituximab and lymphoma standard of care chemotherapy. Two phase I trials with 2 different schedules of SAR3419 as a single agent were conducted in refractory/relapsed B-cell non-Hodgkin lymphoma. Activity was reported in both schedules, in heavily pretreated patients of both follicular and diffuse large B-cell lymphoma subtypes, with a notable lack of significant hematological toxicity, validating SAR3419 as an effective antibody-drug conjugate and opening opportunities in the future. Numerous B-cell-specific anti-CD19 biologics are available to treat B-cell non-Hodgkin lymphoma, and early phase I results obtained with SAR3419 suggest that it is a promising candidate for further development in this disease. In addition, thanks to the broad expression of CD19, SAR3419 may provide treatment options for B-cell leukemias that are often CD20-negative.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD19/imunologia , Antineoplásicos Fitogênicos/uso terapêutico , Imunoconjugados/uso terapêutico , Linfoma de Células B/tratamento farmacológico , Maitansina/análogos & derivados , Animais , Anticorpos Monoclonais Humanizados/química , Antígenos CD19/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Leucemia de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Maitansina/química , Maitansina/farmacologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Ocul Pharmacol Ther ; 26(1): 55-64, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20148655

RESUMO

PURPOSE: An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. METHODS: The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. RESULTS: Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. CONCLUSIONS: Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.


Assuntos
Corioide/metabolismo , Sistemas de Liberação de Medicamentos , Ovalbumina/administração & dosagem , Ovalbumina/farmacocinética , Retina/metabolismo , Esclera/metabolismo , Animais , Preparações de Ação Retardada , Estudos de Viabilidade , Géis , Masculino , Concentração Osmolar , Ratos , Ratos Endogâmicos BN , Temperatura
18.
Cancer Res ; 70(6): 2528-37, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20197459

RESUMO

Conjugation of cytotoxic compounds to antibodies that bind to cancer-specific antigens makes these drugs selective in killing cancer cells. However, many of the compounds used in such antibody-drug conjugates (ADC) are substrates for the multidrug transporter MDR1. To evade the MDR1-mediated resistance, we conjugated the highly cytotoxic maytansinoid DM1 to antibodies via the maleimidyl-based hydrophilic linker PEG(4)Mal. Following uptake into target cells, conjugates made with the PEG(4)Mal linker were processed to a cytotoxic metabolite that was retained by MDR1-expressing cells better than a metabolite of similar conjugates prepared with the nonpolar linker N-succinimidyl-4-(maleimidomethyl)cyclohexane-1-carboxylate (SMCC). In accord, PEG(4)Mal-linked conjugates were more potent in killing MDR1-expressing cells in culture. In addition, PEG(4)Mal-linked conjugates were markedly more effective in eradicating MDR1-expressing human xenograft tumors than SMCC-linked conjugates while being tolerated similarly, thus showing an improved therapeutic index. This study points the way to the development of ADCs that bypass multidrug resistance.


Assuntos
Imunotoxinas/farmacologia , Maitansina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Molécula de Adesão da Célula Epitelial , Feminino , Humanos , Imunotoxinas/química , Imunotoxinas/farmacocinética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Maleimidas/química , Maitansina/química , Maitansina/farmacocinética , Maitansina/farmacologia , Camundongos , Camundongos SCID , Polietilenoglicóis/química
19.
MAbs ; 1(6): 548-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20068397

RESUMO

Despite recent advances in the treatment of multiple myeloma, new agents are still needed to improve the outcome for patients. The established success of monoclonal antibodies in the treatment of some cancers has promoted interest in developing antibody-based therapies for multiple myeloma. Efforts have included the development of antibodies conjugated to potent cytotoxic moieties that combine the specificity of anti-myeloma-targeting antibodies with highly active anti-tumor compounds. Two such immunoconjugates currently in clinical development are composed of antibodies that target cell surface proteins found on multiple myeloma cells, and are coupled to cytotoxic maytansinoids. IMGN901 targets the neural cell adhesion molecule, CD56, which is expressed on the majority of myeloma cells, as well as on other cancers, while BT062 targets CD138, a primary diagnostic marker for multiple myeloma. In this review, we discuss the preclinical and early clinical data for these two promising new antibody-based anti-myeloma agents.


Assuntos
Imunoterapia , Imunotoxinas/uso terapêutico , Mieloma Múltiplo/terapia , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Fitogênicos/uso terapêutico , Biomarcadores Tumorais/imunologia , Antígeno CD56/imunologia , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Maitansina/uso terapêutico , Maytenus/imunologia , Mieloma Múltiplo/imunologia , Sindecana-1/imunologia , Moduladores de Tubulina/uso terapêutico
20.
Clin Cancer Res ; 15(12): 4028-37, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19509164

RESUMO

PURPOSE: We investigated the antitumor effect of murine/human chimeric CD138-specific monoclonal antibody nBT062 conjugated with highly cytotoxic maytansinoid derivatives against multiple myeloma (MM) cells in vitro and in vivo. EXPERIMENTAL DESIGN: We examined the growth inhibitory effect of BT062-SPDB-DM4, BT062-SMCC-DM1, and BT062-SPP-DM1 against MM cell lines and primary tumor cells from MM patients. We also examined in vivo activity of these agents in murine MM cell xenograft model of human and severe combined immunodeficient (SCID) mice bearing implant bone chips injected with human MM cells (SCID-hu model). RESULTS: Anti-CD138 immunoconjugates significantly inhibited growth of MM cell lines and primary tumor cells from MM patients without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G(2)-M cell cycle arrest, followed by apoptosis associated with cleavage of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. Nonconjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that specific binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells. The coculture of MM cells with bone marrow stromal cells protects against dexamethasone-induced death but had no effect on the cytotoxicity of immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth in vivo and prolonged host survival in both the xenograft mouse models of human MM and SCID-hu mouse model. CONCLUSION: These results provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Imunoconjugados/uso terapêutico , Maitansina/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Sindecana-1/imunologia , Animais , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos SCID , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Células Estromais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA